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THE BONGARTZ’S THEOREM OF

GORENSTEIN COSILTING COMPLEXES

Hailou Yao and Qianqian Yuan

Abstract. We describe the Gorenstein derived categories of Gorenstein

rings via the homotopy categories of Gorenstein injective modules. We
also introduce the concept of Gorenstein cosilting complexes and study

its basic properties. This concept is generalized by cosilting complexes
in relative homological methods. Furthermore, we investigate the exis-

tence of the relative version of the Bongartz’s theorem and construct a

Bongartz’s complement for a Gorenstein precosilting complex.

1. Introduction

Homological algebra is at the root of modern techniques in many areas of
mathematics. Gorenstein homological algebra is the relative version of ho-
mological algebra that uses Gorenstein projective, Gorenstein injective and
Gorenstein flat resolutions instead of the classical projective, injective, flat res-
olutions. The Gorenstein methods are great use in investigating commutative
and non-commutative algebras, as well as the representation theory and mod-
ule category theory. Enochs and Jenda [16] introduced Gorenstein modules
as a generalization of finitely generated modules of G-dimension zero over a
two-sided noetherian ring, in the sense of Auslander and Bridger [3]. The
papers [4, 5, 17] represent the subject, which has been developed to an ad-
vanced level. For example, the Gorenstein derived category makes Gorenstein
quasi-isomorphisms become isomorphisms and have some advantages in relative
settings.

Brenner, Butler [9] and Happel, Ringel [19] started considering the classic
tilting theory in the context of finitely generated modules over artin algebras.
Colpi, Trlifaj [15] and Angeleri-Hügel, Coelho [1] generalized it to the case of
infinitely generated modules over arbitrary associative rings. Auslander and

Received April 26, 2023; Accepted September 13, 2023.

2020 Mathematics Subject Classification. Primary 16E35, 18G25; Secondary 18G80.
Key words and phrases. Gorenstein injective module, Gorenstein cosilting complex,

Gorenstein derived category.
This work was financially supported by National Natural Science Foundation of China

(Grant No.12071120).

©2023 Korean Mathematical Society

1337



1338 H. L. YAO AND Q. Q. YUAN

Solberg [6–8] introduced the concepts of finitely generated tilting and cotilt-
ing modules over relative homological algebras. Wei [29] gave an important
characterization for relative tilting modules over artin algebras. However, the
scope of the relative (co)tilting theory developed by Auslander and Solberg was
limited to finitely generated modules over artin algebras. So some authors have
attempted to extend the scope to the context of infinitely generated modules
in recent years. Especially the relative (co)tilting theory was discussed in the
context of Gorenstein homological algebras. For instance, Yan, Li and Ouyang
[31] generalized Auslander-Solberg relative notions by giving the definitions of
infinitely generated Gorenstein cotilting and tilting modules over Gorenstein
rings. In [25], Moradifar and Yassemi established the theory of infinitely gen-
erated Gorenstein tilting modules by developing Gorenstein tilting approxima-
tions. Furthermore, Rickard [26] introduced the concept of tilting complexes,
as a generalization of tilting modules, to study the triangulated equivalence
between two bounded derived categories of module categories. And he gave
a Morita theory for derived categories. Miyachi [24] studied the tilting com-
plexes over the ring extensions. Keller and Vossieck introduced the notion of
silting complexes, which is a generalization of tilting complexes in [22]. It is
well known that a module is tilting if and only if it is quasi-isomorphic to a
silting complex. In [30], Wei described the semi-tilting (silting) complexes and
gave the Bazzoni’s characterization. Moreover, the 2-term silting complexes
have attracted many scholars’ great interest. Hoshino, Kato and Miyachi [20]
studied the relation between the 2-term silting complexes and torsion pairs in
the category of modules. They characterized the 2-term presilting complexes as
a direct summand completion of the 2-term silting complexes, which is the ana-
logue of the Bongartz completion of a classical tilting module. Later, Koga [23]
provided a generalization version for finite length presilting complexes in the
bounded homotopy category of finitely generated projectives. Buan and Zhou
[11] showed that it is reasonable to see the silting theory as the relative version
of tilting theory in the level of derived category, and gave a generalization of
the classical tilting theorem of Brenner and Butler in term of 2-term silting
complexes, which is said to be the silting theorem. Cao and Wei [12] gave that
a partial Gorenstein silting complex have a complement in CM-finite algebra.
Dual to the silting theory, Zhang and Wei [32] concentrated on the cosilting
complexes, and proved them coincides with AIR-cotilting and quasi-cotilting
modules.

Evidently, it is vital for cosilting theory that the cosilting complexes are
studied in relative homological methods. According to Enochs and Jenda [16]
Gorenstein injective modules are rarely finitely generated. This conclusion
shows that the construction of Bongartz’s theorem in relative cosilting the-
ory is more difficult and important. Inspired by the fruitful results of silting
complexes and cosilting complexes, the main purpose of this paper is to concen-
trate on the cosilting complexes in the context of relative homological algebras.
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We characterize the one-to-one correspondence between certain specially con-
travariantly finite subcategories of derived category and Gorenstein cosilting
complexes, and prove that a module is Gorenstein cotilting if and only if it is
isomorphic in the Gorenstein derived category to a Gorenstein cosilting com-
plex. More importantly, we give the Bazzoni’s characterization of n-Gorenstein
cosilting complexes and the Bongartz’s theorem corresponding to the Goren-
stein precosilting complexes.

The paper is organized as follows. In Section 2, we review some fundamental
notions and results. We devote Section 3 to investigating the Gorenstein cosilt-
ing complexes and showing that there is a one-to-one correspondence between
certain specially contravariantly finite subcategories of derived category and the
isomorphism classes of Gorenstein cosilting complexes. We prove the Bazzoni’s
characterization of n-Gorenstein cosilting complexes. The Bongartz’s theorem
corresponding to the Gorenstein precosilting complexes is given in Section 4.

2. Preliminaries

2.1. A ring Λ is said to be a Gorenstein ring if Λ is two-sided Noetherian and Λ
has finite injective dimension, both as left and right Λ-modules. A Gorenstein
ring Λ is l-Gorenstein if the injective dimension of Λ as a left Λ-module is at
most l. In this case, the injective dimension of Λ as a right Λ-module is also at
most l. Throughout this paper, we fix that Λ is an l-Gorenstein ring.

We denote by Λ-Mod (resp. Λ-mod) the category of (finitely generated) left
Λ-modules.

2.2. A Λ-module M is called Gorenstein injective if there exists an exact
sequence

¨ ¨ ¨ Ñ I1 Ñ I0 Ñ I0 Ñ I1 Ñ ¨ ¨ ¨

in Λ-Mod with all terms injective, such thatM “ ImpI0 Ñ I0q and the sequence
is still exact after applying the functor HomΛpI,´q for any injective left Λ-
module I. Let Λ-GI (resp. Λ-Ginj) denote the full subcategory of Λ-modules
consisting of Gorenstein injective modules in Λ-Mod (resp. Λ-mod).

2.3. A proper Gorenstein injective resolution of an object M is an exact se-
quence

E‚ “ 0 Ñ M Ñ G0 Ñ G1 Ñ ¨ ¨ ¨

such that all Gi P GI and HomΛpE‚, Gq stays exact for each G P GI. The
second requirement guarantees the uniqueness of such a resolution in the ho-
motopy category.

A Λ-module M has a proper Gorenstein injective resolution, if there is a
proper exact sequence

0 Ñ M Ñ G0 Ñ G1 Ñ G2 Ñ ¨ ¨ ¨ Ñ Gi Ñ ¨ ¨ ¨

with each Gi P GI. The Gorenstein injective dimension GI-res.dimM of M is
defined to be the smallest integer s ě 0, such that there is an exact sequence
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0 Ñ M Ñ G0 Ñ G1 Ñ G2 Ñ ¨ ¨ ¨ Ñ Gs Ñ 0 with all Gi P GI, and GI-
res.dimM=8 if there is no such an exact sequence of finite length.

If Λ is an l-Gorenstein ring, then each Λ-module M admits a proper Goren-
stein injective resolution 0 Ñ M Ñ G0 Ñ G1 Ñ ¨ ¨ ¨ Ñ Gl.

2.4. If Λ is a finite-dimensional algebra, then each module M (not necessarily
finitely generated) admits a proper Gorenstein injective resolution 0 Ñ M Ñ

G‚. In other words, Λ-GI is covariantly finite in Λ-Mod.

2.5. For an abelian category A with enough injective objects IA, or simply
I, is the full subcategory of injective objects. A complex C‚ is GI-coacyclic,
if HomApC‚, Gq is coacyclic for each G P GI. The complex C‚ is also called
proper exact. Since C‚ is coacyclic if and only if HomApC‚, Iq is coacyclic for
each I P I, we have that a GI-coacyclic complex is coacyclic. By Lemma 2.5
in [13], a complex C‚ is GI-coacyclic if and only if HomApC‚, Gq is coacyclic
for each G P K`pGIq.

2.6. We call a chain map f‚ : X‚ Ñ Y ‚ a GI-quasi-isomorphism if the
HomApf‚, Gq is a quasi-isomorphism for each G P GI, i.e., there are isomor-
phisms of abelian groups

HnHomApf‚, Gq : HnHomApY ‚, Gq – HnHomApX‚, Gq.

Since f‚ : X‚ Ñ Y ‚ is a quasi-isomorphism if and only if HnHomApf‚, Iq is
an isomorphism for each I P I, it follows that a GI-quasi-isomorphism is a
quasi-isomorphism.

2.7. For ˚ P tblank,`, bu, C˚pAq, K˚pAq and D˚pAq represent the corre-
sponding cochain complexes category, homotopy category and derived cate-
gory of A, respectively. Let K˚

coacpAq : “ tX‚ P K˚pAq |X‚ is coacyclicu and
K˚

gicoacpAq :“ tX‚ P K˚pAq |X‚ is GI-coacyclicu denote the homotopy of

coacyclic complexes of A and the (corresponding) homotopy of GI-coacyclic
complexes of A, respectively, which are thick triangulated subcategories. For
K˚

gicoacpAq, the corresponding compatible saturated multiplicative system is

the collection of all the GI-quasi-isomorphism in K˚pAq. Then we have the
following triangulated category

D˚
gipAq : “ K˚pAq{K˚

gicoacpAq,

which is called the Gorenstein injective derived category.
Note that if every object of A has finite injective dimension, then A-GI “ I

by [17, Proposition 10.1.2], hence D˚
gipAq “ D˚pAq.

The following lemma can be straightforward to see by [28, Corollaire 4-3].

Lemma 2.1. For ˚ P tblank,`,´u, there is an isomorphism of triangulated
categories

D˚pAq – D˚
gipAq{pK˚

coacpAq{K˚
gicoacpAqq.

Note that from the above lemma, we can easily obtain that the quotient func-
tor D˚

gipAq Ñ D˚pAq is an equivalence if and only if each quasi-isomorphism

in K˚pAq is a GI-quasi-isomorphism. Then the following result holds.
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Proposition 2.2. The quotient functor D˚
gipAq Ñ D˚pAq is an equivalence if

and only if every Gorenstein injective object is injective.

Proof. Suppose that each quasi-isomorphism in K˚pAq is also a GI-quasi-
isomorphism, and G is a Gorenstein injective object. If 0 Ñ X

f
ÝÑ Y Ñ Z Ñ 0

is a short exact sequence, then f induces a quasi-isomorphism f‚, which is
also a GI-quasi-isomorphism. So, we can obtain the induced sequence 0 Ñ

HomApZ,Gq Ñ HomApY,Gq Ñ HomApX,Gq Ñ 0 is exact. Therefore, G is
injective. The converse is obvious. □

2.8. For each class C of objects in a triangulated category T , the full subcate-
gory given by

KC “ tX P T |HomT pX,Y rnsq “ 0,@Y P C,@n P Zu

is clearly a triangulated subcategory closed under direct summands, and hence
thick by Rickard’s criterion [27].

The following facts were stated by Jiaqun Wei in [30], which are frequently
used in our papers. We list them as following for convenience.

2.9. Let C be an idempotent complete triangulated category with [1] the shift
functor. Assume that B is a full subcategory of C. Recall that B is closed
under extension if for any triangle X Ñ Y Ñ Z Ñ in C with X,Z P B, we
have Y P B. The subcategory B is cosuspended (resp. suspended) if it is closed
under extension and under functor r´1s (resp. r1s). It is easy to see that B is
cosuspended (resp. suspended) if and only if for any triangle X Ñ Y Ñ Z Ñ

(resp. Z Ñ Y Ñ X Ñ) in C with Z P B, one has that X P B ô Y P B.
2.10. An object M P C has a B-resolution (resp. B-coresolution) with the
length at most m (m ě 0) if there are triangles Mi`1 Ñ Xi Ñ Mi (resp. Mi Ñ

Xi Ñ Mi`1) with 0 ď i ď m such that M0 “ M,Mm`1 “ 0 and each Xi P B.
In this case, we denote by B-res.dimpMq ď m (resp. B-cores.dimpMq ď m).
One may compare such notions with usual finite resolutions and coresolutions,
respectively, in the module category.

2.11. Associated with a subcategory B, we have the following notations, where
n ě 0 and m is an integer.

pB̂qn “ tM P C | B-res.dimpMq ď nu.

pB̌qn “ tM P C | B-cores.dimpMq ď nu.

B̂ “ tM P C | M P pB̂qn for some nu.

B̌ “ tM P C | M P pB̌qn for some nu.

BK‰0 “ tN P C | HompM,N risq “ 0 for all M P B and all i ‰ 0u.

K‰0B “ tN P C | HompN,M risq “ 0 for all M P B and all i ‰ 0u.

BKąm “ tN P C | HompM,N risq “ 0 for all M P B and all i ą mu.

KąmB “ tN P C | HompN,M risq “ 0 for all M P B and all i ą mu.
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BK"0 “ tN P C | N P BKąm for some mu.

Note that BKąm (resp. KąmB) is suspended (resp. cosuspended) and closed
under direct summands and that BK"0 is a triangulated subcategory of C.
2.12. The subcategory B is said to be semi-selforthogonal (resp. selforthogonal)
if B Ď BKą0 (resp. B Ď BK‰0). For instance, the subcategories of all projective
(resp. all injective Λ-modules) are self-orthogonal in Λ-modules, for a ring Λ.

In the following results in this section, we always assume that B is additively
closed and B is semi-selforthogonal.

2.13. Associated with the subcategory B, we also have the following two useful
subcategories.

XB “ tN P K‰0B | there are triangles Ni Ñ Bi Ñ Ni`1 Ñ such that N0 “ N,

Ni PK‰0 B, and Bi P B for all i ď 0u,

BX “ tN P BK‰0 | there are triangles Ni`1 Ñ Bi Ñ Ni Ñ such that N0 “ N,

Ni P BK‰0 , and Bi P B for all i ď 0u.

Since B is closed under finite direct sums and direct summands, we could
summarize some results on the subcategories associated with B.

Lemma 2.3 ([30]). Let B be a semi-self-orthogonal subcategory of triangulated
category C such that B is additively closed. Then

p1q The three subcategories qB Ď XB Ď Ką0B are cosuspended and closed
under direct summands.

p2q The three subcategories pB Ď BX Ď BKą0 are suspended and closed under
direct summands.

p3q B “ qB
Ş

BKą0 “ pB
Ş

Ką0B.
p4q p qBqn “ XB

Ş

pXBqKąn “ XB
Ş

pKą0BqKąn . In particular, it is closed
under extensions and direct summands.

p5q p pBqn “ BX
Ş

KąnpBX q “ BX
Ş

KąnpBKą0q. In particular, it is closed
under extensions and direct summands.

p6q The following three subcategories coincide with each other.

(i) xBy: the smallest triangulated subcategories containing B.
(ii) p pBq´ :“ tX P C | there is some Y P pB and some i ď 0 such thatX “ Y risu.

(iii) p qBq` :“ tX P C | there is some Y P qB and some i ě 0 such thatX “ Y risu.

p7q pB “ BKą0
Ş

xBy.

p8q qB “ Ką0B
Ş

xBy.

Let G “ Gextnp´,´q “ ExtnA-GIp´,´q (see [31]). Then G is an additive

subfunctor of Ext1p´,´q. A short exact sequence 0 Ñ M Ñ N Ñ L Ñ 0 is
called G-exact if it is in Gext1pL,Mq. For a Λ-module T and some n ą 0, we
give the following notations

Ką0TG “ tM P Λ-Mod | GextipM,T q “ 0 for all i ą 0u,
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CopresnG pT q “tM P Λ-Mod | there is a G-exact sequence Tn Ñ Tn´1 Ñ

¨ ¨ ¨ Ñ T1 Ñ M Ñ 0,with each Ti P AdpΛT u.

Lemma 2.4 ([31]). The following statements are equivalent for an exact se-
quence 0 Ñ M Ñ N Ñ L Ñ 0.

p1q The sequence is G-exact;
p2q 0 Ñ HomΛpP,Mq Ñ HomΛpP,Nq Ñ HomΛpP,Lq Ñ 0 is an exact

sequence for all P P GP;
p3q 0 Ñ HomΛpL,Gq Ñ HomΛpN,Gq Ñ HomΛpL,Gq Ñ 0 is an exact

sequence for all G P GI.

Lemma 2.5. Assume that the exact sequence 0 Ñ M
f

ÝÑ N
g

ÝÑ L Ñ 0 is

G-exact. Then M
f

ÝÑ N
g

ÝÑ L Ñ is a triangle in DgipΛq.

3. Gorenstein cosilting complexes

In this section, we introduce and study some basic properties of Gorenstein
cosilting complexes. We establish the one-to-one correspondence between iso-
morphism classes of Gorenstein cosilting complexes and certain contravariantly
finite cosuspended subcategories. In order to show some results, we general-
ize the statements in Gorenstein derived categories [18] to Gorenstein injective
derived categories. Let A “ Λ-Mod, we can use them to obtain the desired
consequences in this section.

Lemma 3.1 ([13]). A chain map f‚ : X‚ Ñ Y ‚ is a GI-quasi-isomorphism if
and only if HomApf‚, G‚q is a quasi-isomorphism for each G‚ P K`pGIq, or
equivalently, there are isomorphisms of abelian groups for each G‚ P K`pGIq

HomKpAqpf‚, G‚rnsq : HomKpAqpY ‚, G‚rnsq – HomKpAqpX‚, G‚rnsq @n P Z.

Lemma 3.2. p1q Let f‚ : G‚ Ñ X‚ be a GI-quasi-isomorphism, where G‚ P

K`pGIq. Then there is a chain map g‚ : X‚ Ñ G‚ such that g‚f‚ is homotopic
to IdG‚ .

p2q Let f‚ : X‚ Ñ G‚ be a GI-quasi-isomorphism with X‚, G‚ P K`pGIq.
Then f‚ is a homotopy equivalence.

Proof. p1q It is easy to obtain by Lemma 3.1 that

HomKpAqpf‚, G‚q : HomKpAqpX‚, G‚q – HomKpAqpG‚, G‚q.

Then the statement holds.
p2q It follows from (1). □

Proposition 3.3. The functor Q : f‚ ÞÑ
IdG‚

f‚ induces an abelian group iso-

morphism HomKpAqpX‚, G‚q – HomDgipAqpX‚, G‚q, where G‚ P K`pGIq and
X‚ is an arbitrary complex.
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Proof. Let IdG‚

f‚ “ 0, we can get by the calculation of left fractions that there is

a GI-quasi-isomorphism t‚ : G‚ Ñ Y ‚ such that the homotopy t‚f‚ „ 0. Then,
it yields from Lemma 3.2 that there is a GI-quasi-isomorphism g‚ : Y ‚ Ñ G‚

such that g‚t‚ „ IdG‚ . Hence, f‚ „ 0.
On the other hand, assume s‚

f‚ P HomDgipAqpX‚, G‚q, and use Lemma 3.2

again, then there is a GI-quasi-isomorphism g‚ : Y ‚ Ñ G‚ such that g‚s‚ „

IdG‚ . Thus, s‚

f‚ “
IdG‚

g‚f‚ “ Qpg‚f‚q. The conclusion holds. □

Note that from Proposition 3.3 KbpGIq and K`pGIq can be viewed as tri-
angulated subcategories of Db

gipAq and D`
gipAq, respectively.

In order to give an equivalent characterization of Gorenstein cosilting com-
plexes, we need the following notations and results

Dě0
gi :“ tX‚ P DgipΛq |HomDgipX

‚, Grisq “ 0 for any G P GI and all i ą 0u.

It is obvious that Dě0
gi “ Ką0pGIq. For any X‚ P Dě0

gi , we learn from Proposi-
tion 3.3 that X‚ satisfies that

HiHomΛpX‚, Gq “ HomKpΛqpX‚, Grisq – HomDgi
pX‚, Grisq “ 0

for any G P GI and i ą 0. We assert D`
gipΛq “ K"0pGIq. Indeed, X‚ P

K"0pGIq if and only if there is an integer n such that HomDgi
pX‚, Grisq –

HomKpΛqpX‚, Gq “ HiHomΛpX‚, Gq “ 0 for G P GI and i ą n if and only if

X‚ P D`
gipΛq.

Proposition 3.4. The following statements hold.

p1q D`
gipAq is a triangulated subcategory of DgipAq;

p2q Db
gipAq is a triangulated subcategory of D`

gipAq.

Proof. (1) Let f‚ : B‚ Ñ Y ‚ be a chain map with B‚ P KgicoacpAq and Y ‚ P

K`pAq. Without loss of generality, assume that Y i “ 0 for i ă 0, then there
is the following natural factorization:

B‚ :

��

¨ ¨ ¨ // B´2 //

��

B´1 //

��

B0 //

��

B1 //

��

¨ ¨ ¨

B1‚ :

��

¨ ¨ ¨ // 0 //

��

Kerd0 //

��

B0 //

��

B1 //

��

¨ ¨ ¨

Y ‚ : ¨ ¨ ¨ // 0 // 0 // Y 0 // Y 1 // ¨ ¨ ¨

It is enough to prove that B1‚ is GI-coacyclic by [21, Lemma 10.3]. We only
need to show that the following sequence

(˚) HomApB1, Gq
d0˚

ÝÝÑ HomApB0, Gq
d̃0˚

ÝÝÑ HomApKerd0, Gq
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is exact for any G P GI, where d̃0 : Kerd0 Ñ B0 is induced by d0. It is obvious
by B‚ coacyclic that the sequence

0 Ñ HomApKerd0, Gq
ι

ÝÑ HomApB´1, Gq Ñ HomApB´2, Gq

is exact. Consider the following commutative diagram:

HomApB1, Gq
d0˚

// HomApB0, Gq
d´1˚

//

d̃0˚

##

HomApB´1, Gq
d´2˚

// HomApB´2, Gq

HomApKerd0, Gq

ι

::

where the first row is exact. One can easily check that

Kerd̃0˚ “ Kerd0˚ “ Imd1˚ and Imd̃0˚ – Imd0˚ “ Kerd̃´1˚ – HomApKerd0, Gq.

Hence, the sequence p˚q is exact. This completes the proof.
(2) It is similar to (1). □

Let A be an abelian category with enough injective objects and n P Z. We
define the Gorenstein extension functor ExtnA-GIp´,´q to be HomDb

gi
p´,´rnsq.

Then we obtain the following result.

Theorem 3.5. Let A be an abelian category with enough injective objects, M
an object in A admitting a proper Gorenstein injective resolution, and N an
arbitrary object in A. Then ExtnA-GIpN,Mq “ ExtnGpN,Mq.

Proof. Let 0 Ñ M Ñ G‚ be a proper Gorenstein injective resolution of M .
Then M – G‚ in D`

gipAq. It follows from Propositions 3.4 and 3.3 that

ExtnA-GIpN,Mq “ HomDb
gipAqpN,M rnsq

“ HomD`
gipAq

pN,Grnsq

“ HomK`pAqpN,Grnsq

– HnHomApN,Gq

“ ExtnGpN,Mq. □

Now we give the definition of Gorenstein (pre)cosilting complexes and show
an equivalent characterization.

Definition. A complex T ‚ is said to be

(1) Gorenstein precosilting if
(S1) T ‚ P KbpGIq;
(S2) AdpDgi

T ‚ Ď Kią0T ‚.

(2) Gorenstein cosilting if it satisfies (S1), (S2), and
(S3) KbpGIq “ xAdpDgi

T ‚y, that is, KbpGIq coincides with the small-
est triangulated subcategory containing AdpDgi

T ‚.
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We also say that a complex T ‚ P DgipΛq is n-Gorenstein cosilting if it is a

Gorenstein cosilting complex such that GI P p {AdpDgi
T ‚qn.

Theorem 3.6. Assume that T ‚ P DgipΛq and AdpDgi
T ‚ Ď Dě0

gi . Then T ‚ is
Gorenstein cosilting if and only if it satisfies the following three conditions.

pS11q T ‚ P |GI;
pS21q AdpDgi

T ‚ Ď Kią0T ‚;

pS31q GI Ď {AdpDgi
T ‚.

Proof. Sufficiency. It is obvious by (S11) that AdpDgi
T ‚ Ď |GI. From Lemma

2.3 that |GI Ď xGIy “ KbpGIq, one can get that T ‚ P KbpGIq and AdpDgi
T ‚ Ď

xGIy “ KbpGIq. We have from (S31) and Lemma 2.3 that GI Ď {AdpDgi
T ‚ Ď

xAdpDgi
T ‚y. Consequently, KbpGIq “ xAdpDgi

T ‚y.

Necessity. Since AdpDgi
T ‚ ĎDě0

gi “ Ką0pGIq, we have GI Ď pAdpDgi
T ‚q

Ką0 .

According to (S3), then GI Ď xAdpDgi
T ‚y. It is easy to see by Lemma 2.3

that GI Ď {AdpDgi
T ‚. Note that T ‚ P KbpGIq “ xGIy, so we have that

T ‚ P xGIy
Ş

Ką0pGIq “ |GI. The proof is completed. □

The following result is well known in triangulated categories, pure derived
categories, and Gorenstein derived categories with respect to Gorenstein pro-
jective modules. Now, we give the version of Gorenstein injective derived cat-
egories.

Proposition 3.7. Let F : A Ñ Db
gipAq be the composition of the embedding

A Ñ KbpAq and the localization functor KbpAq Ñ Db
gipAq. Then the functor

F : A Ñ Db
gipAq is fully faithful.

Proof. Let f P HomApX,Y q. If F pfq “ 0, it is easy to see that there is a GI-
quasi-isomorphism s‚ : Y Ñ B‚ such that there is a homotopy s‚f „ 0. Then
we have H0ps‚qH0pfq “ 0. It yields that f “ 0 since H0ps‚q is an isomorphism.

Assume that s‚

a‚ P HomDgipAqpX‚, G‚q, which can be represented as the
following diagram

X
a‚

// B‚ ks s‚

Y

where s‚ is a GI-quasi-isomorphism, a‚ is a morphism in KpAq. We can ob-
tain H0ps‚q : H0pB‚q – Y in A. Consider the truncation U‚ :“ 0 Ñ Imd1 Ñ

B1 Ñ B2 Ñ ¨ ¨ ¨ of B‚ and the canonical map p‚ : B‚ ↠ U‚. Let f : “

H0ps‚q
´1

H0pa‚q P HomDgipAqpX,Y q. Since s‚ is a GI-quasi-isomorphism, we
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have that p‚s‚ is also a GI-quasi-isomorphism. We can get the following dia-
gram of complexes:

B‚

p‚

��
X

p‚a‚

//

a

==

f !!

U‚ Y

s‚

\d

IdYz�

p‚s‚

ks

Y

p‚s‚

OO

Obviously, we only need to prove p‚s‚f “ p‚a‚. Consider the following
commutative diagram:

B‚
p‚

// U‚

Y

s‚

OO

H0
ps‚

q // H0pB‚q

OO

Then we can learn that p‚s‚f “ p‚s‚H0ps‚q
´1

H0pa‚q “ p‚a‚. It follows that

F pfq “ IdY

f‚ “ s‚

a‚ . □

Definition ([31]). A Λ-module T is called an n-Gorenstein cotilting module if
it satisfies the following three conditions.

(C1) IdGT ď n;
(C2) GextipT I , T q “ 0 for each i ą 0 and all sets I;
(C3) There exists a G-exact sequence

0 Ñ T r Ñ T r´1 Ñ ¨ ¨ ¨ Ñ T 0 Ñ E Ñ 0

with each T i P AdpT for all E P GI.

We can now use the above statements to prove the following results.

Proposition 3.8. A left Λ-module T is a Gorenstein cotilting module if and
only if T is pGorenstein quasi-isomorphic toq a Gorenstein cosilting complex.

Proof. Necessity. From (C3), there is a G-exact sequence

0 Ñ T
f0

ÝÑ G0
f1

ÝÑ G1 Ñ ¨ ¨ ¨
fn

ÝÑ Gn Ñ 0

with each Gi P GI. It follows by Lemma 2.5 that there exists a series of
triangles Ti Ñ Gi Ñ Ti`1 Ñ in DgipΛq, 0 ď i ď n, such that Tn`1 “ 0, T0 “ T

and Tj “ Kerfj`1 for 0 ď j ď n ´ 1, namely, T P |GI. One can get from
Theorem 3.5 that 0 “ GextiΛpT I , T q – HomDgi

pT I , T risq for any set I and
i ą 0. For any X P AdpDgi

T , we can easily obtain HomDgi
pX,T risq “ 0. By

the assumption, for any G P GI, there is a G-exact sequence

0 Ñ T r Ñ T r´1 Ñ ¨ ¨ ¨ Ñ T 0 Ñ G Ñ 0.
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Hence, there is a series of triangles Gi`1 Ñ Ti Ñ Gi Ñ in DgipΛq, where

G0 “ G,Gr`1 “ 0 for 0 ď i ď r. Then, GI Ď {AdpDgi
T .

Sufficiency. Suppose that G‚ P KbpGIq is a Gorenstein cosilting complex,
which is Gorenstein quasi-isomorphic to T . Then we have by Theorem 3.5 that
0 “ HomDgi

pG‚I , G‚risq – HomDgi
pT I , T risq – GextiΛpT I , T q for any set I

and i ą 0. So the condition (C2) is satisfied.
Since T is isomorphic to a Gorenstein cosilting complex in a derived cate-

gory and T P Dě0
gi , we can learn from Theorem 3.6 that T P |GI. It follows

by 2.11 that there is a series of triangles T ‚
i Ñ Gi

fi
ÝÑ T ‚

i`1 Ñ in DgipΛq

with Gi P GI, T ‚
t`1 “ T, T ‚

0 “ 0, where 0 ď i ď t. One can easily get

that T ‚
i P Ką0pGIq from T ‚

t – Gt P GI and GI Ď Ką0pGIq for each i. Con-

sider the first triangle T ‚
0

f0
ÝÑ G0 Ñ T ‚

1 Ñ, where T ‚
0 “ T is already a Λ-

module. For any G P GI, applying HomDgi
p´, Gq to the above triangle, we

have that HomDgi
pG0, Gq Ñ HomDgi

pT,Gq is surjective. We can also ob-
serve from Proposition 3.3 that HomΛpG0, Gq Ñ HomΛpT,Gq is surjective and
f0 P HomDgipT,G0q – HomΛpT,G0q. So, f0 is a homomorphism between mod-
ules. It is well known that all injective modules are Gorenstein injective. We
claim that f0 is injective. Indeed, taking any homomorphism g : T0 Ñ Q with
Q injective, we can obtain the following commutative diagram in Λ-Mod for
some homomorphism h:

0 // Kerpf0q
i // T0

f0 //

g

��

G0

h~~
Q

This shows that gi “ hf0i “ 0. Note that g is injective, so i “ 0 and

consequently, f0 is injective. Then there is a G-exact sequence 0 Ñ T0
f0

ÝÑ

G0 Ñ Cokerf0 Ñ 0, which induces a triangle T0 Ñ G0 Ñ Cokerf0 Ñ in
DgipΛq. So, T ‚

1 – Cokerf0 in DgipΛq. Therefore, T ‚
1 is Gorenstein quasi-

isomorphic to a Λ-module Cokerf0 in KpΛq. Repeating the above discussion
for all i, we can get that each fi is injective and each T ‚

i is (Gorenstein quasi-
isomorphic to) a Λ-module. Note that T ‚

t “ Gt, we have by the above argument
that there is a long exact sequence 0 Ñ T Ñ G1 Ñ G2 Ñ ¨ ¨ ¨ Ñ Gt Ñ 0.
Therefore, IdGpT q ď t, namely, the condition (C1) holds.

For anyG P GI, it is easy to obtain by Theorem 3.6 thatG P GI Ď {AdpDgi
T .

Then there is a series of triangles G‚
i`1 Ñ Ti

αi
ÝÑ G‚

i Ñ in DgipΛq with G‚
0 “

G,Ti P AdpDgi
T and G‚

s`1 “ 0 for 0 ď i ď s. We have by Theorem 3.5 that 0 “

GextjΛpP, T q – HomDgi
pP, T rjsq for any P P GP and j ą 0. It follows thatG‚

i P

GPKą0 for any 0 ď i ď s. Applying HomDgi
pP,´q to the triangle G‚

1 Ñ T0
α0

ÝÑ

G Ñ, we get that 0 Ñ HomDgi
pP, T0q Ñ HomDgi

pP,Gq is injective. It follows
from Proposition 3.7 that 0 Ñ HomΛpP, T0q Ñ HomΛpP,Gq is injective. Since
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a projective generator in Λ-Mod is a Gorenstein projective module, we obtain
HomΛpP,Cokerα0q “ 0. Therefore, Cokerα0 “ 0, namely, α0 is surjective.

Then there is a G-exact sequence 0 Ñ Kerα0 Ñ T0
α0

ÝÑ G Ñ 0. It induces

a triangle Kerα0 Ñ T0
α0

ÝÑ G Ñ in DgipΛq. Hence, G‚
1 – Kerα0 in DgipΛq.

Moreover, G‚
1 is Gorenstein quasi-isomorphic to Kerα0 P Λ-Mod in KpΛq.

Repeating the process, there is a G-exact sequence for G P GI, 0 Ñ Ts Ñ

Ts´1 Ñ ¨ ¨ ¨ Ñ T0 Ñ G Ñ 0 with Ti P AdpDgi
pT q, 0 ď i ď s. So we get the

condition (C3). □

Proposition 3.9. Let T ‚ and T ‚ ‘ M‚ be Gorenstein cosilting complexes.
Then M‚ P AdpDgi

T ‚.

Proof. It is immediate by the assumption that xAdpDgi
pT ‚ ‘M‚qy“KbpGIq “

xAdpDgi
T ‚y, and T ‚ ‘ M‚ P AdpDgi

pT ‚ ‘ M‚q Ď Ką0pT ‚ ‘M‚q. The latter

one yields M‚ P Ką0T ‚. Then, T ‚ ‘M‚ P AdpDgi
pT ‚ ‘M‚q Ď pAdpDgi

pT ‚ ‘

M‚qqKą0 Ď pAdpDgi
T ‚qKą0 from Lemma 2.3. Furthermore, we get M‚ P

Ką0T ‚
Ş

xAdpDgi
pT ‚ ‘ M‚qy “ Ką0T ‚

Ş

xAdpDgi
T ‚y “ ­AdpDgi

T ‚. Using

Lemma 2.3 again, we can obtainM‚ P ­AdpDgi
T ‚

Ş

pAdpDgi
T ‚qKą0 “AdpDgi

T ‚.
□

Proposition 3.10. Assume that T ‚ is Gorenstein cosilting with AdpDgi
T ‚ Ď

Dě0
gi . Then the following statements hold.

p1q If there are triangles T ‚
i Ñ Gi Ñ T ‚

i`1 Ñ with Gi P GI for all 0 ď i ď n
and T ‚

0 “ T ‚, T ‚
n`1 “ 0, then AdpDgi

p
Àn

i“0Giq “ GI.
p2q If there are triangles Gi`1 Ñ T ‚

i Ñ Gi Ñ with T ‚
i P AdpDgi

T ‚ for all
0 ď i ď m, where G0 “ G, Gm`1 “ 0, then ‘m

i“0T
‚
i is a Gorenstein cosilting

complex. Moreover, AdpDgi
p‘m

i“0T
‚
i q “ AdpDgi

T ‚.

p3q T ‚ P p |GIqn if and only if GI Ď {pAdpDgi
T ‚qn for any n ě 0.

Proof. (1) Since
Àn

i“0Gi P GI is prod-semi-selforthogonal, we can obtain that
Àn

i“0Gi satisfies (S2). One can easily check from Lemma 2.3 that AdpDgi
T ‚ Ď

x
Àn

i“0Giy. So xGIy “ KbpGIq “ xAdpDgi
T ‚y Ď xAdpDgi

p
Àn

i“0Giqy Ď xGIy,

i.e., xAdpDgi
p
Àn

i“0Giqy “ xGIy “ KbpGIq. Then
Àn

i“0Gi satisfies (S3). It

is obvious that
Àn

i“0Gi and
Àn

i“0Gi ‘ G are Gorenstein cosilting, for any
G P GI. Then, AdpDgi

p
Àn

i“0Giq “ GI by Proposition 3.9.

(2) It is not difficult to verify from Theorem 3.6 that both p
Àm

i“0 T
‚
i q ‘ T ‚

and
Àm

i“0 T
‚
i are Gorenstein cosilting. Then we can learn by Proposition 3.9

that AdpDgi
p‘m

i“0T
‚
i q “ AdpDgi

T ‚.

(3) Let G P GI, we can get from Theorem 3.6 that G P {pAdpDgi
T ‚qm for

some m ą 0. If m ď n, then the conclusion obviously holds. Assume that
m ą n, there is a series of triangles G‚

i`1 Ñ T ‚
i Ñ G‚

i Ñ in DgipΛq with
T ‚
i P AdpDgi

T ‚, where G‚
0 “ G, G‚

m`1 “ 0 for 0 ď i ď m. Note that
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G‚
m – T ‚

m P AdpDgi
T ‚. It is straightforward to get

HomDgi
pG‚

m´1, G
‚
mr1sq – HomDgi

pG‚
m´2, G

‚
mr2sq

– ¨ ¨ ¨

– HomDgi
pG‚

0, G
‚
mrmsq “ HomDgi

pG,G‚
mrmsq.

One can observe by T ‚ P p |GIqn and Lemma 2.3 that AdpDgi
T ‚ Ď pKą0GIqKąn .

It follows from G P Ką0GI that HomDgi
pG,G‚

mrmsq “ 0 for m ą n. Therefore,
HomDgipG

‚
m´1, G

‚
mr1sq “ 0, moreover, the triangle T ‚

m “ G‚
m Ñ T ‚

m´1 Ñ

G‚
m´1 Ñ splits. Then, G‚

m´1 P AdpDgi
T ‚ and G P p {AdpDgi

T ‚qm´1. Repeating
this process, the result holds.

On the other hand, it is obvious that T ‚ P KbpGIq “ xGIy. Then, T ‚ P

xGIy
Ş

Ką0GI “ |GI. Moreover, there is a series of triangles T ‚
i Ñ G‚

i Ñ

T ‚
i`1 Ñ in DgipΛq with T ‚

0 “ T ‚, Gi P GI, and T ‚
n`1 “ 0 for 0 ď i ď n. Hence,

T ‚
n – Gn P GI. We conclude T ‚ P p |GIqn. □

Lemma 3.11. Suppose that T ‚ P DgipΛq with AdpDgi
T ‚ P Ką0T ‚. Then

Ką0T ‚ “ XAdpDgi
T ‚ .

Proof. Clearly, XAdpDgi
T ‚ Ď Ką0T ‚. It is enough to show the inverse inclusion.

Let M‚ P Ką0T ‚ and consider the triangle M‚ f
ÝÑ T ‚HomDgi

pM‚,T ‚
q

Ñ

M‚
1 Ñ, where f is the canonical evaluation map. Then we can easily get

that HomDgi
pM‚

1 , T
‚risq “ 0 for all i ą 0, i.e., M‚

1 P Ką0T ‚. Continuing the
process, there are triangles M‚

j Ñ T ‚
j Ñ M‚

j`1 Ñ with each T ‚
j P AdpDgi

T ‚

and M‚
j P Ką0T ‚, M‚

0 “ M‚ for all j ě 0. Therefore, M‚ P XAdpDgi
T ‚ .

Consequently, Ką0T ‚ Ď XAdpDgi
T ‚ . This completes the proof. □

Proposition 3.12. T ‚ is a Gorenstein cosilting complex with AdpDgi
T ‚ Ď

Dě0
gi if and only if T ‚ is Gorenstein precosilting and Ką0T ‚ Ď Dě0

gi .

Proof. Necessity. By the assumption, we have that G P p {AdpDgi
T ‚qn for any

G P GI and some n. Hence, there is a series of triangles G‚
i`1 Ñ T ‚

i Ñ G‚
i Ñ

with G‚
0 “ G, T ‚

i P AdpDgi
T ‚ and G‚

n`1 “ 0 for 0 ď i ď n. For any M‚ P
Ką0T ‚, applying the functor HomDgi

pM‚,´q to these triangles, we can get

M‚ P Ką0G. Then, Ką0T ‚ Ď Dě0
gi .

Sufficiency. Since T ‚ P Dě0
gi is a Gorenstein precosilting complex, we can

learn from T ‚ P KbpGIq “ xGIy that T ‚ P xGIy
Ş

Ką0GI “ |GI. Moreover,
there is a series of triangles T ‚

i Ñ Gi Ñ T ‚
i`1 Ñ in DgipΛq with T ‚

0 “ T ‚,
Gi P GI, and T ‚

n`1 “ 0 for 0 ď i ď n. Then, T ‚
n – Gn P GI. Applying the

functor HomDgi
pG,´q to these triangles for any G P GI, we have isomorphisms

HomDgi
pG,T ‚rjsq – HomDgi

pG,T ‚
1 rj ´ 1sq – ¨ ¨ ¨ – HomDgi

pG,T ‚
nrj ´ nsq “ 0
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for j ą n. Then, it is easy to see GI Ď KąnT ‚, namely GIr´ns Ď Ką0T ‚. As

0 P Ką0T ‚, we get GI P p {Ką0T ‚qn. By Lemma 3.11 and [30, Corallary 2.8],

there is a triangle G Ñ X‚ Ñ Y ‚ Ñ in DgipΛq with X‚ P p {AdpDgi
T ‚qn and

Y ‚ P Ką0T ‚. We can immediately obtain from Ką0T ‚ Ď Dě0
gi that the triangle

is split. Since p {AdpDgi
T ‚qn is closed under direct summands, we can obtain

G P p {AdpDgi
T ‚qn for any G P GI. The proof is completed. □

The Bazzoni’s characterization of n-Gorenstein cotilting modules was given
in [31] that a Λ-module T is n-Gorenstein cotilting if and only if Ką0TG “

CopresnGpT q.
In order to give the Bazzoni’s characterization of n-Gorenstein cosilting com-

plexes, we need the following subcategory of DgipΛq. Let T ‚ P DgipΛq and
n ą 0, we denote

Copresn
Dě0

gi
pT ‚q“tM‚ PDgipΛq | there exist some triangles

M‚
i Ñ T ‚

i Ñ M‚
i`1 Ñ with T ‚

i PAdpDgi
T ‚ for all 0 ď i ă n,

where M‚
n P Dě0

gi and M‚
0 “ M‚u.

Obviously, Copresn
Dě0

gi

pT ‚q is closed under products. The following result gives

more properties about this subcategory.

Lemma 3.13. p1q Dě0
gi r´ns Ď Copresn

Dě0
gi

pT ‚q.

p2q If AdpDgi
T ‚ Ď Dě0

gi , then Copresn
Dě0

gi

pT ‚q Ď Dě0
gi .

Proof. Since 0 P AdpDgi
T ‚ and Dě0

gi is cosuspended, one can obtain by the
definitions that the conclusions hold. □

Proposition 3.14. If T ‚ with AdpDgi
T ‚ Ď Dě0

gi is an n-Gorenstein cosilting

complex, then Ką0T ‚ “ Copresn
Dě0

gi

pT ‚q.

Proof. The Ką0T ‚ Ď Dě0
gi directly follows from Proposition 3.12. It implies by

Lemma 3.11 that Ką0T ‚ “ XAdpDgi
T ‚ . Take any M‚ P Ką0T ‚, it is obvious

that there is a series of triangles M‚
i Ñ T ‚

i Ñ M‚
i`1 Ñ in DgipΛq with T ‚

i P

AdpDgi
T ‚ for all 0 ď i ă n, where M‚

n P XAdpDgi
T ‚ Ď Dě0

gi and M‚
0 “ M‚.

Hence, Ką0T ‚ Ď Copresn
Dě0

gi

pT ‚q.

Conversely, for any M‚ P Copresn
Dě0

gi

pT ‚q, there are triangles M‚
i Ñ T ‚

i Ñ

M‚
i`1 Ñ in DgipΛq with M‚

n P Dě0
gi , T

‚
i P AdpDgi

T ‚ and M‚
0 “ M‚ for all

0 ď i ă n. Therefore, X‚ P KąnT ‚ for any X‚ P Dě0
gi “ Ką0GI.

It is apparent from Proposition 3.10 that T ‚ P p |GIqn. Then there is a series
of triangles T ‚

i Ñ Gi Ñ T ‚
i`1 Ñ inDgipΛq with T ‚

n`1 “ 0, Gi P GI and T ‚
0 “ T ‚

for 0 ď i ď n. Applying the functor HomDgi
pX‚,´q to these triangles, we have
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by X‚ P Dě0
gi “ Ką0GI and T ‚

n – G‚
n that there are isomorphisms

HomDgi
pX‚, T ‚rjsq – HomDgi

pX‚, T ‚
1 rj ´ 1sq – ¨ ¨ ¨

– HomDgi
pX‚, T ‚

nrj ´ nsq “ HomDgi
pX,G‚

nrj ´ nsq “ 0

for j ą n.
Applying HomDgi

p´, T ‚q to the triangles M‚
i Ñ T ‚

i Ñ M‚
i`1 Ñ for 0 ď i ă

n, it yields by M‚
n P Dě0

gi “ Ką0GI that

HomDgi
pM‚, T ‚risq – ¨ ¨ ¨ – HomDgi

pM‚
n, T

‚ri` nsq “ 0.

Therefore, HomDgi
pM‚, T ‚risq“0, i.e., M‚ P Ką0T ‚. Hence, Copresn

Dě0
gi

pT ‚q Ď

Ką0T ‚. □

In order to show the sufficient condition of n-Gorenstein cosilting complexes,
we should give the following statements as a foundation.

Lemma 3.15. Let X be an additive full subcategory of A. Assume that for
every X‚ P KbpX q there is a GI-quasi-isomorphism X‚ Ñ GX‚ with GX‚ P

K`pGIq. Then there is a functor ψ : KbpX q Ñ K`pGIq such that ψpX‚q “

GX‚ , and a GI-quasi-isomorphism ϕX‚ : X‚ Ñ ψpX‚q for each X‚ P KbpX q

such that ϕX‚ is functorial in X‚.

Proof. Let X‚, Y ‚ P KbpX q. We can obtain by the assumption that there are
GI-quasi-isomorphisms ϕX‚ : X‚ Ñ GX‚ and ϕY ‚ : Y ‚ Ñ GY ‚ . It follows by
Lemma 3.1 that ϕX‚ induces an isomorphism

HomK`pAqpGX‚ , GY ‚ q – HomK`pAqpX‚, GY ‚ q.

For each chain map f‚ : X‚ Ñ Y ‚, it is clear that there is a unique g‚ : GX‚ Ñ

GY ‚ such that there is the following commutative diagram:

X‚
ϕX‚ //

f‚

��

GX‚

g‚

��
Y ‚

ϕY ‚ // GY ‚

Let Y ‚ “ X‚ and f‚ “ IdX‚ , we can get that, up to a homotopy equivalence,
GX‚ is uniquely determined by X‚. Moreover, it yields that there is a functor
ψ, such that ψpX‚q “ GX‚ and ψpf‚q “ g‚. Then we can easily see from the
above commutative diagram that ϕX‚ is functorial in X‚. □

Let fGI be the full subcategory of A consisting of objects with finite Goren-
stein injective dimension. Then fGI is an additive category. It follows that
KbpfGIq is a triangulated category.
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Proposition 3.16. There exist a functor ψ : KbpfGIq Ñ KbpGIq, and a GI-
quasi-isomorphism ϕX‚ : X‚ Ñ ψpX‚q for each X‚ P KbpfGIq, which is func-
torial in X‚. Moreover, the inclusion KbpGIq Ñ KbpfGIq has a left adjoint
ψ.

Proof. In order to get the functor ψ, taking X be fGI in Lemma 3.15, it suffices
to show that for X‚ P KbpX q there is a GI-quasi-isomorphism X‚ Ñ GX‚ with
GX‚ P KbpGIq. Let wpX‚q denote the width of X‚, which is the number of
non-zero components of X‚. We will prove the statements by induction on
wpX‚q.

In case of wpX‚q “ 1, then it is a direct consequence of 2.3. So, there is a
GI-quasi-isomorphism ϕX‚ : X‚ Ñ GX‚ with GX‚ P KbpGIq.

Assume wpX‚q ě 2 with Xj ‰ 0 and Xi “ 0 for i ą j. Then we have

the distinguished triangle X‚
1

u
ÝÑ X‚

2 Ñ X‚ Ñ X‚
1 r1s in KbpX q, where X‚

1 “

X‚ăj ,X‚
2 :“ Xjrj ` 1s. By the induction hypothesis, there exist GI-quasi-

isomorphisms

ϕ1 : X‚
1 Ñ GX‚

1
, ϕ2 : X‚

2 Ñ GX‚
2

with GX‚
1
, GX‚

2
P KbpGIq. We can obtain from Lemma 3.1 that ϕ1 induces an

isomorphism

HomK`pX qpGX‚
1
, GX‚

2
q – HomK`pX qpX‚

1 , GX‚
2
q.

Moreover, there is a unique morphism f‚ : GX‚
1

Ñ GX‚
2
such that f‚ϕ1 “ ϕ2u,

up to homotopy. Let GX‚ be the mapping cone of f‚, we can get from the dis-

tinguished triangle GX‚
1

f‚

ÝÑ GX‚
2

Ñ GX‚ Ñ GX‚
1
r1s that GX‚ P KbpGIq. One

can easily see that there is ϕX‚ : X‚ Ñ GX‚ , such that there is a commutative
diagram:

X‚
1

u //

ϕ1

��

X‚
2

//

ϕ2

��

X‚ //

ϕX‚

��

X‚
1 r1s

ϕ1r1s

��
GX‚

1

f // GX‚
2

// GX‚ // GX‚
1
r1s

Applying the p´, Qq :“ HomK`pAqp´rns, Qq to the above diagram, where Q
is a Gorenstein injective object, then it induces the commutative diagram with
exact rows:

pGX‚
2
r1s, Qq

u //

pϕ2r1sq
˚

��

pGX‚
1
r1s, Qq //

pϕ1r1sq
˚

��

pGX‚ , Qq //

pϕX‚ q
˚

��

pGX‚
2
, Qq //

pϕ2q
˚

��

pGX‚
1
, Qq

pϕ1q
˚

��
pX‚

2 r1s, Qq
f // pX‚

1 r1s, Qq // pX‚, Qq // pX‚
2 , Qq // pX‚

1 , Qq

Since ϕ1 and ϕ2 are GI-quasi-isomorphisms, we can obtain that pϕ1q˚, pϕ2q˚,
pϕ1r1sq˚, pϕ2r1sq˚ are isomorphisms. Thus, pϕX‚ q˚ is an isomorphism for each
n, that is, pϕX‚ q˚ is a GI-quasi-isomorphism.
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The GI-quasi-isomorphism ϕX‚ : X‚ Ñ GX‚ induces an isomorphism from
Lemma 3.15

HomKbpfGIqpX‚, Q‚q – HomKbpGIqpGX‚ , Q‚q,

which is functorial both in Q‚ P KbpGIq and X‚ P KbpfGIq, i.e., ψ is a left
adjoint of the inclusion KbpGIq Ñ KbpfGIq. □

Let Kb
gicoacpfGIq denote the bounded homotopy category of GI-coacyclic

complexes of objects in fGI. Then Kb
gicoacpfGIq is a thick triangulated sub-

category ofKbpfGIq by 2.7. Note that from 2.7, if X is an additive full subcat-
egory of A, then D˚

gipX q : “ K˚pX q{K˚
gicoacpX q is well-defined, so is Db

gipfGIq

by Proposition 3.16. It follows from 2.7 that the saturated multiplicative
system determined by Kb

gicoacpfGIq is the class of GI-quasi-isomorphisms in

KbpfGIq.
We observe that Db

gipfGIq is not a full subcategory of DgipAq in general.
However, we can get from a similar statements to Proposition 3.3 that the
following lemma.

Lemma 3.17. Let G‚ P KbpGIq. Then Q : f‚ Ñ
IdG‚

f‚ induces an isomorphism

HomKbpfGIqpX‚, G‚q – HomDb
gipfGIqpX‚, G‚q of abelian groups. In particular,

KbpGIq can be viewed as a triangulated subcategory of Db
gipfGIq.

Theorem 3.18. Let A be an abelian category with enough injective objects.
Then Db

gipfGIq – KbpGIq.

Proof. Let F : KbpGIq Ñ Db
gipfGIq be the composition of embedding map

KbpGIq Ñ KbpfGIq and the localization functor Q : KbpfGIq Ñ Db
gipfGIq.

It follows by Proposition 3.16(1) that F is dense. It can be obtained from
Lemma 3.17 that F is fully faithful. □

The following proposition is a direct consequence of Theorem 3.18.

Proposition 3.19. Assume that Λ is a Gorenstein ring. Then we have a
triangle-equivalence Db

gipΛ-Modq » KbpGIq.

Proposition 3.20. Let T ‚ with AdpDgi
T ‚ Ď Db

gipΛq
Ş

Dě0
gi satisfy Ką0T ‚ “

Copresn
Dě0

gi

pT ‚q. Then T ‚ is an n-Gorenstein cosilting complex.

Proof. Since T ‚ P Copresn
Dě0

gi

pT ‚q “ Ką0T ‚ and Copresn
Dě0

gi

pT ‚q is closed under

products, we obtain AdpDgi
T ‚ Ď Ką0T ‚. It follows by the assumption and

Proposition 3.19 that T ‚ P Db
gipΛq. Then, T ‚ P KbpGIq “ xGIy. Consequently,

T ‚ is Gorenstein precosilting.
Clearly, Ką0T ‚ “ Copresn

Dě0
gi

pT ‚q Ď Dě0
gi is an immediate consequence of

the hypothesis and Lemma 3.13. Then, we have by Proposition 3.12 that T ‚

is Gorenstein cosilting.
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Note that T ‚ P xGIy
Ş

Ką0GI “ |GI follows from T ‚ P Dě0
gi “ Ką0GI and

Lemma 2.3. Then there is an integer m such that T ‚ P p |GIqm. Moreover, T ‚

is m-Gorenstein cosilting by Proposition 3.10. So, there is a series of triangles
T ‚
i Ñ Gi Ñ T ‚

i`1 Ñ in DgipΛq with Gi P GI for all 0 ď i ď m, where T ‚
m`1 “ 0

and T ‚
0 “ T ‚. Applying HomDgi

pG,´q to the triangles, for any G P GI, we
have that

HomDgipG,T
‚
mq – HomDgipG,T

‚
m´1r1sq – ¨ ¨ ¨

– HomDgipG,T
‚
0 rmsq “ HomDgipG,T

‚rmsq “ 0.

SinceGr´ns P Dě0
gi r´ns Ď Copresn

Dě0
gi

pT ‚q “ Ką0T ‚, we can obtain HomDgi
pG,

T ‚ri ` nsq “ 0 for any i ą 0. If m ď n, then T is n-Gorenstein cosilting. If

m ą n, then the triangle T ‚
m´1 Ñ Gm´1 Ñ T ‚

m Ñ is split, i.e., T ‚ P p |GIqm´1.

Repeating the process, one can obtain T ‚ P p |GIqn. Then, T ‚ is n-Gorenstein
cosilting. □

Denote that

D
ra,bs

gi “tM‚ P DgipΛq |HiHomDgi
pM‚, Grisq“0, where i ą b and for G P GIu.

The following Bazzoni’s characterization of n-Gorenstein cosilting complexes
can be obtained from Proposition 3.14 in combination with Proposition 3.20.

Theorem 3.21. Suppose that AdpDgi
T ‚ Ď D

r0,ts
gi for t ě 0. Then the following

statements are equivalent.
p1q T ‚ is n-Gorenstein cosilting;
p2q Ką0T ‚ “ Copresn

Dě0
gi

pT ‚q.

Auslander and Reiten [5] showed that there is a one-to-one correspondence
between isomorphism classes of basic cotilting modules and certain contravari-
antly finite cosuspended subcategories. Later, Buan [10] showed that there
is a one-to-one correspondence between basic cotilting complexes and certain
contravariantly finite subcategories of the bounded derived category of an artin
algebra. In the following, we aim to extend such a result to the case of Goren-
stein cosilting complexes.

We list the following definitions and a useful lemma at first.

Definition. Let X Ď Y be two subcategories of D.
(1) X is said to be contravariantly finite in Y if for any Y P Y, there is

a homomorphism f : X Ñ Y for some X P X such that HomDpX 1, fq is
surjective for any X 1 P X .

(2) X is said to be specially contravariantly finite in Y if for any Y P Y, there
is a triangle U Ñ X Ñ Y Ñ with some X P X such that HomDpX 1, U r1sq “ 0
for any X 1 P X .

Note that in the latter case, one has that U P XKią0 if X is closed under
r´1s.
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Proposition 3.22. Assume that AdpDgi
T ‚ P Dě0

gi and T ‚ is Gorenstein cosilt-

ing. Then {Ką0T ‚ “ D`
gi and

Ką0T ‚ Ď Dě0
gi is specially contravariantly finite in

D`
gi.

Proof. It follows by Proposition 3.12 that Ką0T ‚ Ď Dě0
gi . Therefore, we get

that {Ką0T ‚ “ D`
gi. Take any X‚ P D`

gi, it is obvious by T ‚ P KbpGIq that

X‚ P KěmT ‚ for some m, that is, X‚r´ms P Ką0T ‚. As 0 P AdpDgi
T ‚, we can

see that X‚ P {Ką0T ‚ from the definition. Hence, {Ką0T ‚ “ D`
gi.

Note that Ką0T ‚ “ XAdpDgi
T ‚ from Lemma 3.11. By the dual of [30, Corol-

lary 2.8], we obtain for any X‚ P D`
gi “ {Ką0T ‚ “ XAdpDgi

T ‚ there is a tri-

angle U‚ Ñ Y ‚ Ñ X‚ Ñ with U‚ P {AdpDgi
T ‚ and Y ‚ P Ką0T ‚. Since

{AdpDgi
T ‚ Ď pKą0T ‚qKą0 , we specially get that HomDgi

pM‚, U‚r1sq “ 0 for

any M‚ P Ką0T ‚. It follows that Ką0T ‚ is specially contravariantly finite in
D`

gi. □

Proposition 3.23. Assume that T Ď Dě0
gi is specially contravariantly finite in

D`
gi and cosuspended such that pT “ D`

gi. If T
Ş

T Ką0 is closed under products,

then there is a Gorenstein cosilting complex T such that T “ Ką0T ‚.

Proof. It is easy to verify D`
gi “ pT Ď K"0pT Ką0q. Hence, we can obtain

T Ką0 Ď KbpGIq.
Take any M‚ P D`

gi, there is a series of triangles M‚
j`1 Ñ T ‚

j Ñ M‚
j Ñ with

T ‚
j P T for all j ě 0, whereM‚

0 :“ M‚ and eachM‚
j P T Ką0 for j ě 1. It follows

that T ‚
j P T

Ş

T Ką0 for all j ě 1. Then we can check by T Ką0 Ď KbpGIq and

M‚ P D`
gi that M

‚ P KąnpT Ką0q for some n depending on M‚. Applying the

functor HomDgi
p´,M‚

n`1q to the above triangles, we obtain that

HomDgi
pM‚

n,M
‚
n`1r1sq » ¨ ¨ ¨ » HomDgi

pM‚,M‚
n`1rn` 1sq “ 0.

Thus, the triangle M‚
n`1 Ñ T ‚

n Ñ M‚
n Ñ is split. Moreover, M‚

n is a direct

summand of Tn. Since T
Ş

T Ką0 is closed under products and T is cosus-
pended, it implies that T

Ş

T Ką0 is closed under direct summands. Then,
M‚

n P T
Ş

T Ką0 .
Since T Ď Dě0

gi “ Ką0GI, we have GI Ď T Ką0 . In particular, let the
object M‚ in the above be G P GI, then we can obtain the triangles Gj`1 Ñ

T ‚
j

1
Ñ Gj Ñ with Gj P T Ką0 and T ‚

j
1

P T
Ş

T Ką0 for all 0 ď j ď n, where

G0 “ G and Gn`1 “ 0. Take T ‚ “
Àn

j“0 T
‚
j

1 and then we show that T ‚ is

Gorenstein cosilting. Indeed, as T Ką0 Ď KbpGIq and T
Ş

T Ką0 is closed under
products, one can easily verify that T ‚ is Gorenstein precosilting. Moreover, it

is easy to see by the above argument that GI P {AdpDgi
T ‚. Consequently, T ‚

is Gorenstein cosilting.
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It remains to prove that T “ Ką0T ‚. We can easily check by T ‚ “
Àn

j“0 T
‚
j

1

and T ‚
j

1
P T

Ş

T Ką0 that T Ď Ką0T ‚ for all 0 ď j ď n. Take any N P Ką0T ‚,

similar to the above argument, we have a series of triangles Nj`1 Ñ T ‚
j

2
Ñ

Nj Ñ with Nj P T Ką0 , T ‚
0

2
P T and T ‚

j
2

P T
Ş

T Ką0 for all 1 ď j ď m,
where N0 “ N and Nm`1 “ 0. Observe that all objects in these triangles
are in Ką0T ‚. For any L‚ P T

Ş

T Ką0 , one can get that T ‚ ‘ L‚ is also
Gorenstein cosilting. Then we have from Proposition 3.9 that L‚ P AdpDgi

T ‚.

It follows that T
Ş

T Ką0 Ď AdpDgi
T ‚. Moreover, T

Ş

T Ką0 “ AdpDgi
T ‚.

So, the above triangles imply that N‚
1 P {AdpDgi

T ‚ and consequently, N‚
1 P

Ką0T ‚
Ş

{AdpDgi
T ‚ “ AdpDgi

T ‚. It follows by T cosuspended that N‚ P T .

Then the triangle N‚
1 Ñ T ‚

0 Ñ N‚ Ñ is split. So, we can obtain that Ką0T ‚ Ď

T . This completes the proof. □

Combining Propositions 3.22 with 3.23, we obtain the following desired re-
sult. Here, we say two Gorenstein complexes M‚ and N‚ are equivalent if
AdpDgi

M‚ “ AdpDgi
N‚.

Theorem 3.24. There is a one-to-one correspondence, given by u : T ‚ ÞÑ
Ką0T ‚, between equivalence class of Gorenstein cosilting complexes with
AdpDgi

T ‚ Ď Dě0
gi and subcategories T Ď Dě0

gi which is specially contravari-

antly finite in D`
gi, cosuspended and closed under products such that pT “ D`

gi.

Proof. It is not hard to check from Propositions 3.22 and 3.23 that the cor-
respondence is well-defined. Note that u is surjective by Proposition 3.23. If
both T ‚

1 and T ‚
2 are Gorenstein cosilting with Ką0T ‚

1 “ Ką0T ‚
2 , then we can

verify that T ‚
1 ‘T ‚

2 is also Gorenstein cosilting. It follows from Proposition 3.9
that AdpDgi

T ‚
1 “ AdpDgi

T ‚
2 . So, T ‚

1 and T ‚
2 are equivalent. Consequently, u

is bijective. □

4. The Bongartz’s theorem of Gorenstein precosilting complexes

According to [2], given an artin algebra Λ, recall that the Nakayama functor
on mod-Λ is defined as ν :“ DHomΛp´,Λq : mod-Λ Ñ mod-Λ. Restriction of
the Nakayama functor to the category proj-Λ induces an equivalence proj-Λ Ñ

inj-Λ.
Assume that Λ is an artin algebra of CM-finite type over a field k, there

is a finitely generated Gorenstein projective Λ-module G such that Gproj “

addG and Ginj “ addνG. Clearly, addG (resp. addνG) is a contravariantly
(resp. covariantly) finite subcategory of mod-Λ.

In order to show the complement theorem of Gorenstein precosilting com-
plexes, we at first introduce the small version of Gorenstein cosilting complexes.

Definition. (1) A complex T is called a Gorenstein precosilting complex if it
satisfies the following two conditions.

(s1) T ‚ P KbpGinjq;
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(s2) T ‚ P Kią0T ‚.
(2) A complex T is called a Gorenstein cosilting complex if it satisfies (s1),

(s2) and
(s3) KbpGinjq “ xadpDgi

T ‚y, that is, KbpGinjq coincides with the smallest
triangulated subcategory containing adpDgi

T ‚.

Remark 4.1. All results in Section 3 hold if we replace AdpDgi
T ‚ and KbpGIq

by adpDgi
T ‚ and KbpGinjq, respectively.

Definition. For a complex X‚, we define the following notions.
(1) There is a truncation of X‚,

τěnpX‚q : ¨ ¨ ¨ Ñ 0 Ñ Imdn´1 Ñ Xn Ñ Xn`1 Ñ ¨ ¨ ¨ ,

(2) If X‚ P KbpGinjq, then

RpX‚q “ supti P Z | HiHomΛpX‚, νGq ‰ 0u.

Remark 4.2. For any morphism f‚ : X‚ Ñ Y ‚ in KbpGinjq, it is obvious that
there is a triangle X‚ Ñ Y ‚ Ñ Conef‚ Ñ. If RpX‚q “ m and RpY ‚q “ n,
then RpConef‚q “ maxtm,nu.

We give a truncation of a complex in KbpGinjq in term of RpX‚q.

Lemma 4.3. Let X‚ P KbpGinjq. Then X‚ is Gorenstein quasi-isomorphic
to τě´RpX‚qpX‚q in KbpGinjq.

Proof. Without loss of generality, assume that Xi “ 0 for i ą 0 and i ă ´s,
then

X‚ : ¨ ¨ ¨ Ñ 0 Ñ X´s d´s

ÝÝÑ X´s`1 d´s`1

ÝÝÝÝÑ ¨ ¨ ¨
d´1

ÝÝÑ X0 Ñ 0 Ñ ¨ ¨ ¨ .

Let RpX‚q “ m. If m “ s or m “ s ´ 1, it is easy to verify that X‚ is
Gorenstein quasi-isomorphic to τě´mpX‚q.

Assume ´m ě ´s` 2, we have the following commutative diagram:

X‚ :

��

¨ ¨ ¨ // 0 //

��

X´s //

��

X´s`1 //

��

X´s`2 // X´s`3 // ¨ ¨ ¨

τě´s`2pX‚q : ¨ ¨ ¨ // 0 // 0 // Imd´s`1 // X´s`2 // X´s`3 // ¨ ¨ ¨

Applying the functor HomΛp´, νGq to the above diagram, we obtain the
following commutative diagram:

pτě´s`2pX‚q, νGq : ¨ ¨ ¨

��

// pX´s`2, νGq // pImd´s`1, νGq //

��

0 //

��

0 //

��

¨ ¨ ¨

pX‚, νGq : ¨ ¨ ¨ // pX´s`2, νGq // pX´s`1, νGq // pX´s, νGq // 0 // ¨ ¨ ¨

where p´, νGq denotes the functor HomΛp´, νGq. Since 0 Ñ X´s Ñ X´s`1 Ñ

Imd´s`1 Ñ 0 is exact, we can obtain by the above diagram the exact sequence

0 Ñ HomΛpImd´s`1, νGq Ñ HomΛpX´s`1, νGq Ñ HomΛpX´s, νGq Ñ 0.
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It is obvious that the sequence 0 Ñ X´s Ñ X´s`1 Ñ Imd´s`1 Ñ 0 is G-
exact. As X´s P Ginj, we can easily obtain that the above G-exact sequence
is split. Then, Imd´s`1 P Ginj. It is not hard to check that X‚ is Gorenstein
quasi-isomorphic to σě´RpX‚qpX‚q in KbpGinjq. Repeating the process, one
can easily get the result. □

Given two complexes X‚ P KbpGinjq and Y ‚ P KbpGinjq, there is a mor-
phism f‚ : X‚ Ñ Y ‚n, where n “ HomKpΛqpX‚, Y ‚q and HomKpΛqpX‚, Y ‚q P

modk, i.e., HomKpΛqpX‚, Y ‚q is finite dimensional as a k-vector space. Then
one can easily obtain that f induces an epimorphism HomKpΛqpf‚, Y ‚q by
[14, Proposition 4.2.2].

Now, we introduce a series of distinguished triangles in KbpGinjq. For the
following part, we fix a complex U‚ P KbpGinjq and V ‚

0 “ νG as a 0-th
stalk complex in KbpGinjq. Let n0 be the cardinality of a generating set of
HomKpΛqpV ‚

0 , U
‚q. Then there is the morphism f‚

0 : V ‚
0 Ñ U‚n0 in KbpGinjq

such that HomKpΛqpf‚
0 , U

‚q is surjective. It induces a triangle in KbpGinjq

∆0 : V ‚
0

f‚
0

ÝÑ U‚n0
g‚
0

ÝÑ V ‚
1 Ñ .

Similar to the above argument, there is a series of triangles in KbpGinjq

∆k : V ‚
k

f‚
k

ÝÑ U‚nk
g‚
k

ÝÑ V ‚
k`1 Ñ

with HomKpΛqpf‚
k , U

‚q surjective for k ě 1, where nk is the cardinality of a
generating set of HomKpΛqpV ‚

k , U
‚q.

We denote E : “ νG in the following statements.

Lemma 4.4. Let U‚ P KbpGinjq be a complex with RpU‚q “ m ě 0. Then
RpV ‚

k q ď k ` maxtm´ 1, 0u for any k ě 0.

Proof. We will prove the result by induction on k. The statement is trivial in
case k “ 0, i.e., HiHomΛpV ‚

0 , Eq “ 0 for i ą maxtm´1, 0u. Assume inductively
that HiHomΛpV ‚

k´1, Eq “ 0 for i ą k´1`maxtm´1, 0u. Applying the functor
HomΛp´, Eq to ∆k´1, we have the following long exact sequence

¨ ¨ ¨ÑHiHomΛpV ‚
k´1, EqÑHi`1HomΛpV ‚

k , EqÑHi`1HomΛpU‚nk´1 , EqÑ¨ ¨ ¨ .

Since Hi`1HomΛpU‚nk´1 , Eq “
ś

nk´1
Hi`1HomΛpU‚, Eq “ 0, it is easy to

obtain HiHomΛpV ‚
k , Eq “ 0 for i ą k ` maxtm´ 1, 0u. □

Lemma 4.5. Suppose that U‚ P KbpGinjq is a Gorenstein precosilting complex
with RpU‚q “ m ě 0. Then the following statements hold for any k ě 0.

p1q HomKpΛqpV ‚
k , U

‚risq “ 0 for i ą 0.

p2q HomKpΛqpV ‚
k , V

‚
k risq » Hi`kHomΛpV ‚

k , Eq for i ą 0 and k ď 0. In
particular, we have that HomKpΛqpV ‚

k , V
‚
k risq “ 0 for i ą maxtm´ 1, 0u.

Proof. (1) If i ą k, applying HomKpΛqp´, U‚q to ∆0, . . . ,∆k´1, we have that

HomKpΛqpV ‚
k , U

‚risq » HomKpΛqpV ‚
k´1, U

‚ri´ 1sq
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» ¨ ¨ ¨

» HomKpΛqpV ‚
0 , U

‚ri´ ksq “ 0.

In case of 0 ă i ď k, applying HomKpΛqp´, U‚q to ∆k´i, there is a long
exact sequence

¨ ¨ ¨ Ñ HomKpΛqpU‚nk´i , U‚q
HomKpΛqpfk´i,U

‚
q

ÝÝÝÝÝÝÝÝÝÝÝÝÑ HomKpΛqpV ‚
k´i`1, U

‚q

Ñ HomKpΛqpV ‚
k´i`1, U

‚r1sq Ñ HomKpΛqpU‚nk´i , U‚r1sq Ñ ¨ ¨ ¨ .

Since U‚ is a Gorenstein precosilting complex, we have HomKpΛqpU‚nk´i , U‚r1sq

“ 0. It follows from the construction of f‚
k´i that HomKpΛqpfk´i, U

‚q is an epi-
morphism. Then, HomKpΛqpV ‚

k´i`1, U
‚r1sq “ 0. Moreover, it implies that

HomKpΛqpV ‚
k , U

‚risq » HomKpΛqpV ‚
k´1, U

‚ri´ 1sq

» ¨ ¨ ¨

» HomKpΛqpV ‚
k´i`1, U

‚r1sq “ 0.

(2) Applying HomKpΛqpV ‚
k ,´q to ∆0, . . . ,∆k´1, we have

HomKpΛqpV ‚, V ‚
k risq » HomKpΛqpV ‚

k , V
‚
k´1ri` 1sq

» ¨ ¨ ¨

» HomKpΛqpV ‚
k , V

‚
0 ri` ksq

» Hi`kHomΛpV ‚
k , Eq.

In particular, it is a consequence of (1) that Hi`kHomΛpV ‚
k , Eq “ 0 for i ą

maxtm´ 1, 0u. □

Lemma 4.6. Let U‚ P KbpGinjq be a complex with RpU‚q “ m ě 0. If k ě m,
then HomKpΛqpU‚, V ‚

k risq “ 0 for i ą 0.

Proof. Applying HomKpΛqpU‚,´q to ∆j for 0 ď j ď k´ 1, we can learn by the
assumption that

HomKpΛqpU‚, V ‚
k risq » HomKpΛqpU‚, V ‚

k´1ri` 1sq

» HomKpΛqpU‚, V ‚
k´2ri` 2sq

» ¨ ¨ ¨

» HomKpΛqpU‚, V ‚
0 ri` ksq.

It follows from V ‚
0 “ νG andRpU‚q “ m ě 0 that HomKpΛqpU‚, V ‚

0 ri`ksq “ 0.
Then the result holds. □

Lemma 4.7. Suppose that U‚ P KbpGinjq is a Gorenstein precosilting complex
with RpU‚q “ m ě 2. For any k ě m, then the following statements are
equivalent.

p1q HomKpΛqpV ‚
k , V

‚
k risq “ 0 for 0 ă i ă m;

p2q HomKpΛqpf‚
i , Ermsq is surjective for 0 ă i ă m;

p3q RpV ‚
mq ď m;
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p4q RpV ‚
k q ď k.

Proof. p1q ñ p2q Applying the functor HomKpΛqp´, Eq to the ∆i, one can
easily obtain an exact sequence

¨ ¨ ¨ Ñ HomKpΛqpU‚ni , Ermsq
HomKpΛqpfi,Ermsq

ÝÝÝÝÝÝÝÝÝÝÝÝÑ HomKpΛqpV ‚
i , Ermsq

Ñ HomKpΛqpV ‚
i`1, Erm` 1sq Ñ HomKpΛqpU‚ni , Erm` 1sq Ñ ¨ ¨ ¨ .

Since RpU‚q “ m, we have HomKpΛqpU‚ni , Erm` 1sq “ 0. Therefore, one can
easily get CokerHomKpΛqpfi, Ermsq » HomKpΛqpV ‚

i`1, Erm` 1sq. It suffices to
show HomKpΛqpV ‚

i`1, Erm ` 1sq “ 0. Applying the functor HomKpΛqp´, Eq to
the ∆i, . . . ,∆k´1, we can obtain that

CokerHomΛpf‚
i , Ermsq » HomKpΛqpV ‚

i`1, Erm` 1sq

» HomKpΛqpV ‚
i`2, Erm` 2sq

» ¨ ¨ ¨

» HomKpΛqpV ‚
k , Erm` k ´ isq

» HomKpΛqpV ‚
k , V

‚
0 rm` k ´ isq

» HomKpΛqpV ‚
k , V

‚
k rm´ isq “ 0.

The last isomorphism follows from Lemma 4.5.
p2q ñ p3q We will show that RpV ‚

i q ď m for 1 ď i ď m by induction on i.
If i “ 1, applying HomKpΛqp´, Eq to ∆0, we have a long exact sequence

¨ ¨ ¨ Ñ HomKpΛqpV ‚
0 , Erj ´ 1sq Ñ HomKpΛqpV ‚

1 , Erjsq Ñ HomKpΛqpU‚n0 , Erjsq Ñ ¨ ¨ ¨ .

Since HomKpΛqpV ‚
0 , Erj ´ 1sq “ 0 by Lemma 4.5, and RpU‚q “ m ě 2, it is

clear that HomKpΛqpV ‚
1 , Erjsq “ 0 for j ą m.

Assume that RpV ‚
i q ď m for 0 ď i ă m. Applying HomKpΛqp´, Eq to the

∆m´1, it is apparent to obtain a long exact sequence

¨ ¨ ¨ Ñ HomKpΛqpU‚nm´1 , Ermsq
HomKpΛqpf‚

m´1,Ermsq
ÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ HomKpΛqpV ‚

m´1, Ermsq

Ñ HomKpΛqpV ‚
m, Erm` 1sq Ñ ¨ ¨ ¨ .

Since HomKpΛqpf‚
m´1, Ermsq is surjective and RpU‚q “ m, it is straightforward

that HomKpΛqpV ‚
m, Erm` 1sq “ 0. Therefore, RpV ‚

mq ď m.
p3q ñ p4q Applying HomKpΛqp´, Eq to ∆j for 0 ď j ď k ´ 1, we have

HomKpΛqpV ‚
k , Erisq » HomKpΛqpV ‚

k´1, Eri´ 1sq

» ¨ ¨ ¨

» HomKpΛqpV ‚
m, Eri`m´ ksq “ 0

for i ą k.
p4q ñ p1q It is trivial from Lemma 4.5. □

Proposition 4.8. Assume that U‚ P KbpGinjq is a Gorenstein precosilting
complex with RpV ‚

mq ď m. Then U‚ ‘V ‚
k is a Gorenstein cosilting complex for

k ě m.
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Proof. It is easy to obtain by the construction that U‚ ‘ V ‚
k P KbpGinjq.

Therefore, the condition (s1) holds. One can easily verify from the assumption
and Lemmas 4.5, 4.6, 4.7 that condition (s2) U‚‘V ‚

k P pU‚‘V ‚
k qKą0 . It suffices

to show that xadpDgi
pU‚ ‘ V ‚

k qy “ KbpGinjq. Indeed, we need to prove that

if HomKpΛqpU‚ ‘ V ‚
k , Xrisq “ 0 for any i, then X‚ is zero. We may construct

the following triangles

∇j´1 : V ‚
j´1 Ñ U‚nj´1 ‘ V ‚

k Ñ V ‚
j ‘ V ‚

k Ñ

for j ď 1. It is clear for s ě 0 that

HomKpΛqpU‚nj´1 ‘ V ‚
k rs` 1s, X‚risq “ HomKpΛqpU‚nj´1 ‘ V ‚

k rss, X‚risq “ 0.

Applying the functor HomKpΛqp´, X‚risq to the triangles ∇1, . . . ,∇k´1, one
can easily check that

HomKpΛqpV ‚
s`1 ‘ V ‚

k rs` 1s, X‚risq “ HomKpΛqpV ‚
s rss, X‚risq “ 0

for 0 ď s ď k ´ 1. It is obvious that HomKpΛqpV ‚
k rs ` 1s, X‚risq “ 0 for

0 ď s ď k ´ 1. Then we can obtain that

HomKpΛqpV ‚
0 , X

‚risq » HomKpΛqpV ‚
1 r1s, X‚risq

» ¨ ¨ ¨

» HomKpΛqpV ‚
k rks, X‚risq “ 0

for any i. Therefore, we get HomΛpaddνG,X‚q “ 0. Moreover, we can learn
HomΛpXj , X‚q “ 0 for any j. It is easy to see from [13, Lemma 2.4] that
HiHomΛpX‚, X‚q “ 0 for any i. Then, H0HomΛpX‚, X‚q “ HomΛpX‚, X‚q “

0, that is X‚ “ 0. So, the condition (s3) is true. As a consequence, U‚ ‘ V ‚
k is

Gorenstein cosilting. □
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