ON NONNIL-EXACT SEQUENCES AND NONNIL-COMMUTATIVE DIAGRAMS

Wei Zhao and Dechuan Zhou

Abstract

In this paper, we investigate the nonnil-exact sequences and nonnil-commutative diagrams and show that they behave in a way similar to the classical ones in Abelian categories.

1. Introduction

Throughout this paper, it is assumed that all rings are commutative and associative with non-zero identity and all modules are unitary. If R is a ring, then $\operatorname{Nil}(R)$ denotes the set of nilpotent elements of R, and $Z(R)$ denotes the set of zero-divisors of R. A ring with $\operatorname{Nil}(R)$ being divided prime is called a ϕ-ring. In this paper, if the nilradical $\operatorname{Nil}(R)$ of a ring R is prime, then R is called a PN-ring. If $Z(R)=\operatorname{Nil}(R)$, then R is called a ZN-ring. We recommend $[1-20]$ for the study of the ring-theoretic characterizations on $\phi-$ rings, and [21-28] for the study of the module-theoretic characterizations on ϕ-rings.

In order to extend the homological methods to commutative rings with the nilradical as a prime ideal, the authors in [26] introduced nonnil-exact sequences and nonnil-commutative diagrams. Since commutative diagrams play an important role in homological theory, we investigate nonnil-commutative diagrams in order to lay the foundation for future work on homological theories over PNrings. We show that nonnil-commutative diagrams behave in a way similar to the classical ones. For example, Five Lemma, Snake Lemma and 3×3 Lemma show the same pattern in PN-rings. To this end, we introduce some necessary concepts and symbols.

Let R be a PN-ring and M an R-module. We set

$$
N N(R)=\{I \mid I \text { is a nonnil ideal of } R\},
$$

[^0]and
$$
\operatorname{Ntor}(M)=\{x \in M \mid I x=0 \text { for some } I \in N N(R)\} .
$$

If $\operatorname{Ntor}(M)=M, M$ is called a nonnil-torsion R-module, and if $\operatorname{Ntor}(M)=0$, M is called a nonnil-torsion-free R-module. Let $f: A \rightarrow B$ be a homomorphism of R-modules. Set

$$
\begin{gathered}
\operatorname{NKer}(f)=\{a \in A \mid s f(a)=0 \text { for some } s \in R \backslash N i l(R)\}, \\
\operatorname{NIm}(f)=\{b \in B \mid s b=s f(a) \text { for some } a \in A \text { and } s \in R \backslash N i l(R)\} .
\end{gathered}
$$

Since $\operatorname{Nil}(R)$ is a prime ideal, $\operatorname{NKer}(f)$ is a submodule of A and $\operatorname{NIm}(f)$ is a submodule of B. We set $\operatorname{NCoker}(f)=B / \operatorname{NIm}(f)$.

Recall from [26] that the submodule $\operatorname{NKer}(f)$ of A is called the nonnilkernel of f and the submodule $\operatorname{NIm}(f)$ of B is called the nonnil-image of f. The homomorphism $f: A \rightarrow B$ is called a nonnil-monomorphism if $\operatorname{NKer}(f)=$ $\operatorname{Ntor}(A)$ and it is called a nonnil-epimorphism if $\operatorname{NIm}(f)=B$. A sequence of R-modules and homomorphisms $A \xrightarrow{f} B \xrightarrow{g} C$ is called a nonnil-complex (resp., a nonnil-exact sequence) if $\operatorname{NIm}(f) \subseteq \operatorname{NKer}(g)$ (resp., $\operatorname{NIm}(f)=\operatorname{NKer}(g)$). Every R-module M has a free nonnil-resolution, that is, there exists a nonnilexact sequence

$$
\cdots \longrightarrow F_{n} \xrightarrow{d_{n}} F_{n-1} \longrightarrow \cdots \longrightarrow F_{1} \xrightarrow{d_{1}} F_{0} \xrightarrow{d_{0}} M \rightarrow 0,
$$

where each F_{i} is free.
Let $f: A \rightarrow B, g: B \rightarrow D, h: A \rightarrow C$ and $k: C \rightarrow D$ be homomorphisms of R-modules. Then the following diagram

is said to be nonnil-commutative if $\operatorname{NIm}(g f-k h)=\operatorname{Ntor}(D)$, that is, there exists $s_{a} \in R \backslash N i l(R)$ such that $s_{a} g f(a)=s_{a} k h(a)$ for any $a \in A$, where the choice of s_{a} depends on a.

An R-module homomorphism $f: A \rightarrow B$ is called a nonnil-isomorphism if there exists a homomorphism $g: B \rightarrow A$ such that $\operatorname{NIm}\left(\mathbf{1}_{A}-g f\right)=\operatorname{Ntor}(A)$ and $\operatorname{NIm}\left(\mathbf{1}_{B}-f g\right)=\operatorname{Ntor}(B)$, that is, the following diagram

is nonnil-commutative. If there exists a nonnil-isomorphism $f: A \rightarrow B$, we say that A, B are nonnil-isomorphic, denoted by $A \stackrel{N}{\simeq} B$. An R-module homomor$\operatorname{phism} f: A \rightarrow B$ is called a weakly nonnil-isomorphism if $\operatorname{NKer}(f)=\operatorname{Ntor}(A)$
and $\operatorname{NIm}(f)=B$, in this case, we say that A is weakly nonnil-isomorphic to B by f, denoted by $f: A \xrightarrow{W N} B$.

In this paper, R always denotes a PN-ring.

2. Main results

Theorem 2.1 (Five Lemma in PN-rings). Consider the following nonnilcommutative diagram with nonnil-exact rows:

(a) If α and γ are nonnil-monomorphisms and δ is a nonnil-epimorphism, then β is a nonnil-monomorphism.
(b) If α and γ are nonnil-epimorphisms and μ is a nonnil-monomorphism, then β is a nonnil-epimorphism.
(c) If δ is a nonnil-epimorphism, μ is a nonnil-monomorphism and α, γ are weakly nonnil-isomorphisms, then β is a weakly nonnil-isomorphism.
(d) If $\delta, \alpha, \gamma, \mu$ are weakly nonnil-isomorphisms, then β is a weakly nonnilisomorphism.

Proof. (a) Let $b \in \operatorname{NKer}(\beta)$. Then there is some $s \in R \backslash N i l(R)$ such that $s \beta(b)=0$. Since the diagram is nonnil-commutative, we have that $s_{1} s \gamma g(b)=$ $s_{1} s g^{\prime} \beta(b)=0$ for some $s_{1} \in R \backslash \operatorname{Nil}(R)$. Thus

$$
g(b) \in \operatorname{NKer}(\gamma) .
$$

Since $\operatorname{NKer}(\gamma)=\operatorname{Ntor}(C)$, there is some $s_{2} \in R \backslash \operatorname{Nil}(R)$ such that $s_{2} g(b)=0$. Thus

$$
b \in \operatorname{NKer}(g) .
$$

Since $\operatorname{NKer}(g)=\operatorname{NIm}(f)$, there are some $a \in A$ and $s_{3} \in R \backslash N i l(R)$ such that $s_{3} b=s_{3} f(a)$. Hence $s s_{3} s_{4} f^{\prime} \alpha(a)=s s_{3} s_{4} \beta f(a)=s s_{3} s_{4} \beta(b)=0$ for some $s_{4} \in R \backslash N i l(R)$. Thus

$$
\alpha(a) \in \operatorname{NKer}\left(f^{\prime}\right) .
$$

Since $\operatorname{NKer}\left(f^{\prime}\right)=\operatorname{NIm}\left(h^{\prime}\right)$, there are some $d^{\prime} \in D^{\prime}$ and $s_{5} \in R \backslash \operatorname{Nil}(R)$ such that $s_{5} \alpha(a)=s_{5} h^{\prime}\left(d^{\prime}\right)$. Since δ is a nonnil-epimorphism, there are some $d \in D$ and $s_{6} \in R \backslash N i l(R)$ such that $s_{6} d^{\prime}=s_{6} \delta(d)$. So we have that $s_{5} s_{6} s_{7} \alpha(a)=$ $s_{5} s_{6} s_{7} h^{\prime}\left(d^{\prime}\right)=s_{5} s_{6} s_{7} h^{\prime} \delta(d)=s_{5} s_{6} s_{7} \alpha h(d)$ for some $s_{7} \in R \backslash N i l(R)$. Hence

$$
a-h(d) \in \operatorname{NKer}(\alpha)
$$

Thus there exists some $s_{8} \in R \backslash N i l(R)$ such that $s_{8} a=s_{8} h(d)$. Since $s_{9} s_{8} s_{3} b=$ $s_{9} s_{8} s_{3} f(a)=s_{9} s_{8} s_{3} f h(d)=0$ for some $s_{9} \in R \backslash \operatorname{Nil}(R)$,

$$
b \in \operatorname{Ntor}(B)
$$

Therefore,

$$
\operatorname{NKer}(\beta)=\operatorname{Ntor}(B),
$$

which implies that β is a nonnil-monomorphism.
(b) Let $b^{\prime} \in B^{\prime}$. Since γ is a nonnil-epimorphism, there are some $c \in C$ and $s \in R \backslash \operatorname{Nil}(R)$ such that

$$
s \gamma(c)=s g^{\prime}\left(b^{\prime}\right)
$$

Nonnil-commutativity of the right square gives $s_{1} s_{2} s \mu k(c)=s_{1} s_{2} s k^{\prime} \gamma(c)=$ $s_{1} s_{2} s k^{\prime} g^{\prime}\left(b^{\prime}\right)=0$ for some $s_{1}, s_{2} \in R \backslash N i l(R)$. Since μ is a nonnil-monomorphism, $s_{3} k(c)=0$ for some $s_{3} \in R \backslash N i l(R)$. Because of the nonnil-exactness of the top row, there are some $b \in B$ and $s_{4} \in R \backslash \operatorname{Nil}(R)$ such that

$$
s_{4} g(b)=s_{4} c
$$

Hence $s s_{4} s_{5} g^{\prime}\left(b^{\prime}\right)=s s_{4} s_{5} \gamma(c)=s s_{4} s_{5} \gamma g(b)=s s_{4} s_{5} g^{\prime} \beta(b)$ for some $s_{5} \in$ $R \backslash N i l(R)$. Hence

$$
b^{\prime}-\beta(b) \in \operatorname{NKer}\left(g^{\prime}\right) .
$$

Since $\operatorname{NKer}\left(g^{\prime}\right)=\operatorname{NIm}\left(f^{\prime}\right), s_{6}\left(b^{\prime}-\beta(b)\right)=s_{6} f^{\prime}\left(a^{\prime}\right)$ for some $a^{\prime} \in A^{\prime}, s_{6} \in$ $R \backslash N i l(R)$ by the nonnil-exactness of the bottom row. Since α is a nonnilepimorphism, there are some $a \in A$ and $s_{7} \in R \backslash \operatorname{Nil}(R)$ with $s_{7} \alpha(a)=s_{7} a^{\prime}$. Hence $s_{6} s_{7} s_{8}\left(b^{\prime}-\beta(b)\right)=s_{6} s_{7} s_{8} f^{\prime}\left(a^{\prime}\right)=s_{6} s_{7} s_{8} f^{\prime} \alpha(a)=s_{6} s_{7} s_{8} \beta f(a)$ for some $s_{8} \in R \backslash \operatorname{Nil}(R)$. Thus $s_{6} s_{7} s_{8} b^{\prime}=s_{6} s_{7} s_{8} \beta(b+f(a))$. Therefore

$$
b^{\prime} \in \operatorname{NIm}(\beta),
$$

which implies that β is a nonnil-epimorphism.
It is easy to see that (c) follows from (a) and (b), while (d) follows from (c).

Theorem 2.2 (Snake Lemma in PN-rings). Consider the following nonnilcommutative diagram with nonnil-exact rows:

(a) There is a nonnil-exact sequence
$\operatorname{NKer}(\alpha) \rightarrow \operatorname{NKer}(\beta) \rightarrow \operatorname{NKer}(\gamma) \rightarrow \operatorname{NCoker}(\alpha) \rightarrow \operatorname{NCoker}(\beta) \rightarrow \operatorname{NCoker}(\gamma)$.
(b) If f is a nonnil-monomorphism, then
$0 \rightarrow \operatorname{NKer}(\alpha) \rightarrow \operatorname{NKer}(\beta) \rightarrow \operatorname{NKer}(\gamma) \rightarrow \operatorname{NCoker}(\alpha) \rightarrow \operatorname{NCoker}(\beta) \rightarrow \operatorname{NCoker}(\gamma)$ is nonnil-exact.
(c) If g^{\prime} is a nonnil-epimorphism, then
$\operatorname{NKer}(\alpha) \rightarrow \operatorname{NKer}(\beta) \rightarrow \operatorname{NKer}(\gamma) \rightarrow \operatorname{NCoker}(\alpha) \rightarrow \operatorname{NCoker}(\beta) \rightarrow \operatorname{NCoker}(\gamma) \rightarrow 0$ is nonnil-exact.

Proof. (a) The proof is completed by the following three steps.
(1) Let $a \in \operatorname{NKer}(\alpha)$. Then there exists $s \in R \backslash N i l(R)$ such that $s \alpha(a)=0$. Because of nonnil-commutativity, there exists some $s_{1} \in R \backslash N i l(R)$ such that $s s_{1} \beta f(a)=s s_{1} f^{\prime} \alpha(a)=0$. Hence $f(a) \in \operatorname{NKer}(\beta)$. Define $f_{1}: \operatorname{NKer}(\alpha) \rightarrow$ $\operatorname{NKer}(\beta)$ by

$$
f_{1}(a)=f(a)
$$

Then f_{1} is well-defined. Similarly, we get a homomorphism $g_{1}: \operatorname{NKer}(\beta) \rightarrow$ $\operatorname{NKer}(\gamma)$ by $g_{1}(b)=g(b)$ for $b \in B$.

For $a^{\prime} \in A^{\prime}$, define

$$
f_{2}\left(a^{\prime}+\operatorname{NIm}(\alpha)\right)=f^{\prime}\left(a^{\prime}\right)+\operatorname{NIm}(\beta)
$$

It is easy to check that $f_{2}: A^{\prime} / \operatorname{NIm}(\alpha) \rightarrow B^{\prime} / \operatorname{NIm}(\beta)$ is well-defined. In fact, if $a^{\prime} \in \operatorname{NIm}(\alpha)$, then $s a^{\prime}=s \alpha(a)$ for some $a \in A$ and $s \in R \backslash N i l(R)$. So there exists $s_{1} \in R \backslash \operatorname{Nil}(R)$ such that $s s_{1} f^{\prime}\left(a^{\prime}\right)=s s_{1} f^{\prime} \alpha(a)=s s_{1} \beta f(a)$. Thus $f^{\prime}\left(a^{\prime}\right) \in \operatorname{NIm}(\beta)$. Similarly, we get a homomorphism $g_{2}: B^{\prime} / \operatorname{NIm}(\beta) \rightarrow$ $C^{\prime} / \operatorname{NIm}(\gamma)$ by $g_{2}\left(b^{\prime}+\operatorname{NIm}(\beta)\right)=g^{\prime}\left(b^{\prime}\right)+\operatorname{NIm}(\gamma)$ for $b^{\prime} \in B^{\prime}$.

Let $c \in \operatorname{NKer}(\gamma)$. Since g is a nonnil-epimorphism, there exist $b \in B$ and $s, s_{1} \in R \backslash N i l(R)$ such that $s_{1} \gamma(c)=0$ and $s g(b)=s c$. Thus $s s_{1} s_{2} g^{\prime} \beta(b)=$ $s s_{1} s_{2} \gamma g(b)=s s_{1} s_{2} \gamma(c)=0$ for some $s_{2} \in R \backslash N i l(R)$. Hence $\beta(b) \in \operatorname{NKer}\left(g^{\prime}\right)=$ $\operatorname{NIm}\left(f^{\prime}\right)$. In this sense, there exist some $a^{\prime} \in A^{\prime}$ and $s_{3} \in R \backslash N i l(R)$ such that $s_{3} f^{\prime}\left(a^{\prime}\right)=s_{3} \beta(b)$. Define

$$
\delta(c)=a^{\prime}+\operatorname{NIm}(\alpha)
$$

If $s g(b)=0$, then there are some $a \in A$ and $s_{4} \in R \backslash N i l(R)$ such that $s_{4} f(a)=$ $s_{4} b$ by the fact that $\operatorname{NIm}(f)=\operatorname{NKer}(g)$. Since $s_{4} s_{5} \beta(b)=s_{4} s_{5} \beta f(a)=$ $s_{4} s_{5} f^{\prime} \alpha(a)$ for some $s_{5} \in R \backslash N i l(R)$, we have $s_{6} a^{\prime}=s_{6} \alpha(a)$ for some $s_{6} \in$ $R \backslash \operatorname{Nil}(R)$ and $a^{\prime} \in \operatorname{NIm}(\alpha)$. Therefore, δ is well-defined.
(2) Next, we show that the following sequence is a nonnil-complex of R modules and homomorphisms:

$$
\operatorname{NKer}(\alpha) \xrightarrow{f_{1}} \operatorname{NKer}(\beta) \xrightarrow{g_{7}} \operatorname{NKer}(\gamma) \xrightarrow{\delta} \operatorname{NCoker}(\alpha) \xrightarrow{f_{2}} \mathrm{NCoker}(\beta) \xrightarrow{g_{2}} \mathrm{NCoker}(\gamma)
$$

For any $a \in \operatorname{NKer}(\alpha)$, we have that $s_{1} g_{1} f_{1}(a)=s_{1} g f(a)=0$ for some $s_{1} \in R \backslash N i l(R)$. Similarly, $s_{2} g_{2} f_{2}\left(a^{\prime}+\operatorname{NIm}(\alpha)\right)=s_{2} g^{\prime} f^{\prime}\left(a^{\prime}\right)+\operatorname{NIm}(\gamma)=0$ for some $s_{2} \in R \backslash \operatorname{Nil}(R)$.

Let $b \in \operatorname{NKer}(\beta)$. Then there exists some $s \in R \backslash N i l(R)$ such that $s \beta(b)=0$. Hence $\beta(b) \in \operatorname{NKer}\left(g^{\prime}\right)=\operatorname{NIm}\left(f^{\prime}\right)$. Thus there are some $a^{\prime} \in A^{\prime}$ and $s_{3} \in$ $R \backslash \operatorname{Nil}(R)$ such that $s_{3} f^{\prime}\left(a^{\prime}\right)=s_{3} \beta(b)=0$. We have that $a^{\prime} \in \operatorname{NKer}\left(f^{\prime}\right)=$ Ntor $\left(A^{\prime}\right)$. So

$$
\delta g_{1}(b)=a^{\prime}+\mathrm{NIm}(\alpha)=0
$$

Let $c \in \operatorname{NKer}(\gamma)$. Then there exists some $s \in R \backslash \operatorname{Nil}(R)$ such that $s \gamma(c)=$ 0 and $s c=s g(b)$. Because there exist some $s_{1}, s_{2} \in R \backslash N i l(R)$ such that $s_{1} s_{2} g^{\prime} \beta(b)=s_{1} s_{2} \gamma g(b)=s_{1} s_{2} \gamma(c)=0, \beta(b) \in \operatorname{NKer}\left(g^{\prime}\right)=\operatorname{NIm}\left(f^{\prime}\right)$. Hence we
have that $s_{3} \beta(b)=s_{3} f^{\prime}\left(a^{\prime}\right)$, where $s_{3} \in R \backslash N i l(R)$. Thus

$$
f_{2} \delta(c)=f_{2}\left(a^{\prime}+\mathrm{NIm}(\alpha)\right)=f^{\prime}\left(a^{\prime}\right)+\mathrm{NIm}(\beta)=0
$$

(3) Notice we have that

$$
\begin{aligned}
\operatorname{NKer}\left(g_{1}\right) & =\left\{b \in \operatorname{NKer}(\beta) \mid s g_{1}(b)=s g(b)=0, s \in R \backslash \operatorname{Nil}(R)\right\} \\
& =\operatorname{NKer}(\beta) \cap \operatorname{NKer}(g)
\end{aligned}
$$

and
$\operatorname{NIm}\left(f_{1}\right)=\left\{b \in \operatorname{NKer}(\beta) \mid s b=s f_{1}(a)=s f(a), a \in \operatorname{NKer}(\alpha), s \in R \backslash \operatorname{Nil}(R)\right\}$.
In verifying that $\operatorname{NKer}\left(g_{1}\right)=\operatorname{NIm}\left(f_{1}\right)$, we show only that $\operatorname{NKer}\left(g_{1}\right) \subseteq$ $\operatorname{NIm}\left(f_{1}\right)$.

Let $b \in \operatorname{NKer}\left(g_{1}\right)$. Then $b \in \operatorname{NKer}(\beta)$ and $b \in \operatorname{NKer}(g)=\operatorname{NIm}(f)$. Thus there exist some $s \in R \backslash N i l(R)$ and $a \in \operatorname{NKer}(\alpha)$ such that $s b=s f(a)$. Hence $s s_{1} f^{\prime} \alpha(a)=s s_{1} \beta f(a)=s s_{1} \beta(b)$ for some $s_{1} \in R \backslash N i l(R)$. So $s s_{1} s_{2} f^{\prime} \alpha(a)=$ $s s_{1} s_{2} \beta(b)=0$ for some $s_{2} \in R \backslash \operatorname{Nil}(R)$. Thus

$$
\alpha(a) \in \operatorname{NKer}\left(f^{\prime}\right)=\operatorname{Ntor}\left(A^{\prime}\right)
$$

Since there exists some $s_{3} \in R \backslash \operatorname{Nil}(R)$ such that $s_{3} \alpha(a)=0$. In this sense, $b \in \operatorname{NIm}\left(f_{1}\right)$. Therefore $\operatorname{NIm}\left(f_{1}\right)=\operatorname{NKer}\left(g_{1}\right)$.

Notice that
$\operatorname{NIm}\left(g_{1}\right)=\left\{c \in \operatorname{NKer}(\gamma) \mid s c=s g_{1}(b)=s g(b), b \in \operatorname{NKer}(\beta), s \in R \backslash N i l(R)\right\}$
and

$$
\begin{aligned}
\operatorname{NKer}(\delta)=\{c \in \operatorname{NKer}(\gamma) \mid s c & =s g(b), s_{1} \beta(b)=s_{1} f^{\prime}\left(a^{\prime}\right), \\
a^{\prime} & \left.\in \operatorname{NIm}(\alpha), s_{1} \in R \backslash N i l(R)\right\} .
\end{aligned}
$$

Let $c \in \operatorname{NKer}(\delta)$. Then $c \in \operatorname{NKer}(\gamma)$ and there exist some $a^{\prime} \in \operatorname{NIm}(\alpha)$ and $s_{1} \in R \backslash N i l(R)$ such that $s c=s g\left(b_{1}\right), s_{1} \beta\left(b_{1}\right)=s_{1} f^{\prime}\left(a^{\prime}\right)$. So there exists some $s_{2} \in R \backslash \operatorname{Nil}(R)$ such that $s_{2} a^{\prime}=s_{2} \alpha(a)$. Thus we have that $s_{1} s_{2} \beta\left(b_{1}\right)=s_{1} s_{2} f^{\prime}\left(a^{\prime}\right)=s_{1} s_{2} f^{\prime} \alpha(a)=s_{1} s_{2} \beta f(a)$. Hence $b_{1}-f(a) \in \operatorname{NKer}(\beta)$. Set

$$
b=b_{1}-f(a)
$$

We have that $b \in \operatorname{NKer}(\beta)$ and $s c=s g_{1}(b)=s g(b)$. Thus $c \in \operatorname{NIm}\left(g_{1}\right)$, which implies that $\operatorname{NIm}\left(g_{1}\right)=\operatorname{NKer}(\delta)$.

Notice that

$$
\begin{aligned}
\operatorname{NKer}\left(f_{2}\right) & =\left\{a^{\prime}+\operatorname{NIm}(\alpha) \mid s f_{2}\left(a^{\prime}+\operatorname{NIm}(\alpha)\right)=0, a^{\prime} \in A^{\prime}, s \in R \backslash N i l(R)\right\} \\
& =\left\{a^{\prime}+\operatorname{NIm}(\alpha) \mid s f^{\prime}\left(a^{\prime}\right) \in \operatorname{NIm}(\beta), a^{\prime} \in A^{\prime}, s \in R \backslash N i l(R)\right\} \\
& =\left\{a^{\prime}+\operatorname{NIm}(\alpha) \mid s_{1} s f^{\prime}\left(a^{\prime}\right)=s_{1} \beta(b), a^{\prime} \in A^{\prime}, b \in B, s, s_{1} \in R \backslash N i l(R)\right\} .
\end{aligned}
$$

If $s_{1} s f^{\prime}\left(a^{\prime}\right)=s_{1} \beta(b)$, then $s^{\prime} s_{1} s g^{\prime} \beta(b)=s^{\prime} s_{1} s g^{\prime} f^{\prime}\left(a^{\prime}\right)=0$ for some $s^{\prime} \in$ $R \backslash \operatorname{Nil}(R)$. So we have that $\beta(b) \in \operatorname{NKer}\left(g^{\prime}\right)=\operatorname{NIm}\left(f^{\prime}\right)$. Thus $s \beta(b)=s f^{\prime}\left(a_{1}^{\prime}\right)$ for some $s \in R \backslash \operatorname{Nil}(R)$ and $a_{1}^{\prime} \in A^{\prime}$. Therefore, we have

$$
\operatorname{NKer}\left(f_{2}\right)=\left\{a^{\prime}+\operatorname{NIm}(\alpha) \mid s \beta(b)=s f^{\prime}\left(a^{\prime}\right), b \in B, a^{\prime} \in A^{\prime}, s \in R \backslash N i l(R)\right\} .
$$

Set $c=g(b)$. We have $s \gamma(c)=s \gamma g(b)=s g^{\prime} f^{\prime}\left(a^{\prime}\right)=0$. Hence $c \in \operatorname{NKer}(\gamma)$. Therefore $\operatorname{NKer}\left(f_{2}\right)=\operatorname{NIm}(\delta)$.

Similarly,
$\operatorname{NKer}\left(g_{2}\right)=\left\{b^{\prime}+\operatorname{NIm}(\beta) \mid s \gamma(c)=s g^{\prime}\left(b^{\prime}\right), c \in C, b^{\prime} \in B^{\prime}, s \in R \backslash N i l(R)\right\}$.
Notice that

$$
\begin{aligned}
& \operatorname{NIm}\left(f_{2}\right)=\left\{b^{\prime}+\operatorname{NIm}(\beta) \mid s b^{\prime}=s f^{\prime}\left(a^{\prime}\right)+s_{1} \beta(b),\right. \\
& \left.a^{\prime} \in A^{\prime}, b \in B, b^{\prime} \in B^{\prime}, s, s_{1} \in R \backslash N i l(R)\right\} .
\end{aligned}
$$

If $\overline{b^{\prime}} \in \operatorname{NKer}\left(g_{2}\right)$, then there exist $c \in C, b^{\prime} \in B^{\prime}$ and $s \in R \backslash N i l(R)$ such that $s \gamma(c)=s g^{\prime}\left(b^{\prime}\right)$. Because $c \in C=\operatorname{NIm}(g)$, we have that $s_{1} c=s_{1} g(b)$ for some $b \in B, s_{1} \in R \backslash N i l(R)$. Thus

$$
s_{1} s g^{\prime}\left(b^{\prime}\right)=s_{1} s \gamma(c)=s_{1} s \gamma g(b)=s_{1} s g^{\prime} \beta(b)
$$

So

$$
b^{\prime}-\beta(b) \in \operatorname{NKer}\left(g^{\prime}\right)=\operatorname{NIm}\left(f^{\prime}\right)
$$

Hence $s b^{\prime}-s \beta(b)=s f^{\prime}\left(a^{\prime}\right)$ for some $a^{\prime} \in A^{\prime}, s \in R \backslash N i l(R)$. We have $\overline{b^{\prime}} \in$ $\operatorname{NIm}\left(f_{2}\right)$, which implies that $\operatorname{NIm}\left(f_{2}\right)=\operatorname{NKer}\left(g_{2}\right)$.
(b) Consider that $\operatorname{NKer}\left(f_{1}\right)=\operatorname{NKer}(\alpha) \cap \operatorname{NKer}(f)=\operatorname{Ntor}(A)$.
(c) Consider that $\operatorname{NIm}\left(g_{2}\right) \supseteq\left(\operatorname{NIm}\left(g^{\prime}\right)+\operatorname{NIm}(\gamma)\right) / \operatorname{NIm}(\gamma)=C^{\prime} / \operatorname{NIm}(\gamma)$.

Corollary 2.3. Consider the following nonnil-commutative diagram with non-nil-exact rows:

(a) If α is a nonnil-epimorphism, then the sequence

$$
0 \rightarrow \operatorname{NKer}(\alpha) \rightarrow \operatorname{NKer}(\beta) \rightarrow \operatorname{NKer}(\gamma) \rightarrow 0
$$

is nonnil-exact.
(b) If γ is a nonnil-monomorphism, then the sequence

$$
0 \rightarrow \operatorname{NCoker}(\alpha) \rightarrow \operatorname{NCoker}(\beta) \rightarrow \operatorname{NCoker}(\gamma) \rightarrow 0
$$

is nonnil-exact.
Proof. (a) It holds by Theorem 2.2.
(b) Suppose that γ is a nonnil-monomorphism. For $a^{\prime}+\operatorname{NIm}(\alpha) \in \operatorname{NKer}\left(f_{2}\right)$, $a^{\prime} \in A^{\prime}$, there exists $s_{1} \in R \backslash N i l(R)$ such that $s_{1} f^{\prime}\left(a^{\prime}\right)=s_{1} \beta(b)$, where $b \in B$. Since the diagram is nonnil-commutative, we have some $s_{2} \in R \backslash N i l(R)$ such that $s_{2} \gamma g(b)=s_{2} g^{\prime} \beta(b)=s_{2} g^{\prime} f^{\prime}\left(a^{\prime}\right)=0$. Thus

$$
g(b) \in \operatorname{NKer}(\gamma)=\operatorname{Ntor}(C)
$$

Hence $s_{3} g(b)=0$ for some $s_{3} \in R \backslash N i l(R)$. So $b \in \operatorname{NKer}(g)=\operatorname{NIm}(f)$, we have some $s_{4} \in R \backslash N i l(R), a \in A$ such that $s_{4} b=s_{4} f(a)$. It is clear that $s_{1} s_{4} f^{\prime}\left(a^{\prime}\right)=s_{1} s_{4} \beta(b)=s_{1} s_{4} \beta f(a)=s_{1} s_{4} f^{\prime} \alpha(a)$. So we have that

$$
a^{\prime}-\alpha(a) \in \operatorname{NKer}\left(f^{\prime}\right)=\operatorname{Ntor}\left(A^{\prime}\right)
$$

Hence there exists some $s_{5} \in R \backslash N i l(R)$ such that $s_{5} a^{\prime}=s_{5} \alpha(a)$ and $a^{\prime} \in$ $\operatorname{NIm}(\alpha)$. Therefore $a^{\prime}+\operatorname{NIm}(\alpha)=0$, which implies that $0 \rightarrow \operatorname{NCoker}(\alpha) \rightarrow$ $\operatorname{NCoker}(\beta) \rightarrow \operatorname{NCoker}(\gamma) \rightarrow 0$ is nonnil-exact.

Lemma 2.4. Let $A \xrightarrow{f} B \xrightarrow{g} C$ be a nonnil-exact sequence of R-modules. If A, C are nonnil-torsion, then B is also nonnil-torsion.

Proof. For any $b \in B$, since $g(b) \in C$ is nonnil-torsion, $s g(b)=0$ for some $s \in R \backslash \operatorname{Nil}(R)$. Hence $b \in \operatorname{NKer}(g)=\operatorname{NIm}(f)$. So there are some $a \in A$ and $s_{1} \in R \backslash N i l(R)$ such that

$$
s_{1} b=s_{1} f(a)
$$

Since $a \in A$ is nonnil-torsion, there is some $s_{2} \in R \backslash N i l(R)$ such that $s_{2} a=0$. Thus

$$
s_{1} s_{2} b=s_{1} s_{2} f(a)=0 .
$$

Therefore b is nonnil-torsion, which implies that B is a nonnil-torsion R module.

Corollary 2.5. Consider the following nonnil-commutative diagram with non-nil-exact rows:

(a) If α and γ are nonnil-monomorphisms, then β is a nonnil-monomorphism.
(b) If α and γ are nonnil-epimorphisms, then β is a nonnil-epimorphism.
(c) If α and γ are weakly nonnil-isomorphisms, then β is a weakly nonnilisomorphism.

Proof. (a) If α and γ are nonnil-monomorphisms, then $\operatorname{NKer}(\alpha)$ and $\operatorname{NKer}(\gamma)$ are nonnil-torsion. So $\operatorname{NKer}(\beta)$ is also nonnil-torsion by Theorem 2.2 and Lemma 2.4. Thus β is a nonnil-monomorphism.
(b) If α and γ are nonnil-epimorphisms, then $\operatorname{NCoker}(\alpha)=\operatorname{NCoker}(\gamma)=0$. Hence $A^{\prime}=\operatorname{NIm}(\alpha)$ and $C^{\prime}=\operatorname{NIm}(\gamma)$. For any $b^{\prime} \in B^{\prime}$, we have that

$$
g_{2}\left(\overline{b^{\prime}}\right)=\overline{g^{\prime}\left(b^{\prime}\right)}=\overline{0}
$$

Thus $g^{\prime}\left(b^{\prime}\right) \in \operatorname{NIm}(\gamma)$. Hence $s g^{\prime}\left(b^{\prime}\right)=s \gamma(c)$ for some $c \in C, s \in R \backslash N i l(R)$. Suppose that $s_{1} c=s_{1} g(b), b \in B, s_{1} \in R \backslash N i l(R)$. We have $s s_{1} s_{2} g^{\prime}\left(b^{\prime}\right)=$ $s s_{1} s_{2} \gamma g(b)=s s_{1} s_{2} g^{\prime} \beta(b)$ for some $s_{2} \in R \backslash N i l(R)$. Hence

$$
b^{\prime}-\beta(b) \in \operatorname{NKer}\left(g^{\prime}\right)=\operatorname{NIm}\left(f^{\prime}\right)
$$

In this sense, there are some $a^{\prime} \in A^{\prime}$ and $s_{3} \in R \backslash \operatorname{Nil}(R)$ such that

$$
s_{3} b^{\prime}-s_{3} \beta(b)=s_{3} f^{\prime}\left(a^{\prime}\right) .
$$

Because $a^{\prime} \in A^{\prime}=\operatorname{NIm}(\alpha)$, we have that $s_{4} a^{\prime}=s_{4} \alpha(a)$ for some $a \in A$, $s_{4} \in R \backslash N i l(R)$. Hence

$$
s_{3} s_{4} b^{\prime}=s_{3} s_{4} \beta(b)+s_{3} s_{4} \beta f(a) .
$$

This is to say that $b^{\prime} \in \operatorname{NIm}(\beta)$. Therefore $\operatorname{NCoker}(\beta)=B^{\prime} / \operatorname{NIm}(\beta)=0$, which implies that β is a nonnil-epimorphism.
(c) follows from (a) and (b).

Theorem 2.6 (3×3 Lemma in PN-rings). Consider the following nonnilcommutative diagram:

in which all columns (resp., rows) are nonnil-exact.
(a) If the first and the second rows (resp., columns) are nonnil-exact, then the third row (resp., column) is nonnil-exact.
(b) If the second and the third rows (resp., columns) are nonnil-exact, then the first row (resp., column) is nonnil-exact.

Proof. (a) Suppose that the first and the second rows (resp., columns) are nonnil-exact. For any $a_{2} \in \operatorname{NKer}\left(f_{2}\right)$, there is some $s_{1} \in R \backslash N i l(R)$ such that $s_{1} f_{2}\left(a_{2}\right)=0$. Since $a_{2} \in A_{2}=\operatorname{NIm}(\alpha)$, there are some $a \in A$ and $s_{2} \in R \backslash N i l(R)$ such that $s_{2} a_{2}=s_{2} \alpha(a)$. Thus we have some $s_{3} \in R \backslash N i l(R)$ such that $s_{1} s_{2} s_{3} \beta f(a)=s_{1} s_{2} s_{3} f_{2} \alpha(a)=s_{1} s_{2} s_{3} f_{2}\left(a_{2}\right)=0$ by the nonnilcommutativity. Hence

$$
f(a) \in \operatorname{NKer}(\beta) .
$$

Since $\operatorname{NKer}(\beta)=\operatorname{NIm}\left(\beta_{1}\right)$, there are some $b_{1} \in B_{1}$ and $s_{4} \in R \backslash N i l(R)$ such that $s_{4} f(a)=s_{4} \beta_{1}\left(b_{1}\right)$. Because the diagram is nonnil-commutative, we have some $s_{6} \in R \backslash N i l(R)$ such that $s_{6} \gamma_{1} g_{1}\left(b_{1}\right)=s_{6} g \beta_{1}\left(b_{1}\right)$. Hence $s_{4} s_{5} s_{6} \gamma_{1} g_{1}\left(b_{1}\right)=$ $s_{4} s_{5} s_{6} g \beta_{1}\left(b_{1}\right)=s_{4} s_{5} s_{6} g f(a)=0$ for some $s_{5} \in R \backslash N i l(R)$. Thus

$$
g_{1}\left(b_{1}\right) \in \operatorname{NKer}\left(\gamma_{1}\right) .
$$

Since $\operatorname{NKer}\left(\gamma_{1}\right)=\operatorname{Ntor}\left(C_{1}\right)$, there is some $s_{7} \in R \backslash \operatorname{Nil}(R)$ such that $s_{7} g_{1}\left(b_{1}\right)=$ 0. Hence

$$
b_{1} \in \operatorname{NKer}\left(g_{1}\right)
$$

Since $\operatorname{NKer}\left(g_{1}\right)=\operatorname{NIm}\left(f_{1}\right)$, there are some $a_{1} \in A_{1}$ and $s_{8} \in R \backslash \operatorname{Nil}(R)$ such that $s_{8} b_{1}=s_{8} f_{1}\left(a_{1}\right)$. Hence $s_{4} s_{8} s_{9} f(a)=s_{4} s_{8} s_{9} \beta_{1} f_{1}\left(a_{1}\right)=s_{4} s_{8} s_{9} f \alpha_{1}\left(a_{1}\right)$ for some $s_{9} \in R \backslash N i l(R)$. Thus we have

$$
a-\alpha_{1}\left(a_{1}\right) \in \operatorname{NKer}(f)
$$

Since $\operatorname{NKer}(f)=\operatorname{Ntor}(A), s_{10}\left(a-\alpha_{1}\left(a_{1}\right)\right)=0$ for some $s_{10} \in R \backslash N i l(R)$. Thus we have that $s_{10} a=s_{10} \alpha_{1}\left(a_{1}\right)$. Hence $s_{11} s_{2} s_{10} a_{2}=s_{11} s_{2} s_{10} \alpha \alpha_{1}\left(a_{1}\right)=0$ for some $s_{11} \in R \backslash \operatorname{Nil}(R)$. Therefore $a_{2} \in \operatorname{Ntor}\left(A_{2}\right)$, which implies that

$$
\operatorname{NKer}\left(f_{2}\right)=\operatorname{Ntor}\left(A_{2}\right)
$$

For any $b_{2} \in \operatorname{NKer}\left(g_{2}\right)$, there is some $s_{1} \in R \backslash \operatorname{Nil}(R)$ such that $s_{1} g_{2}\left(b_{2}\right)=0$. Since $b_{2} \in B_{2}=\operatorname{NIm}(\beta)$, there are some $b \in B$ and $s_{2} \in R \backslash N i l(R)$ such that $s_{2} b_{2}=s_{2} \beta(b)$. By the nonnil-commutativity, there is some $s_{3} \in R \backslash \operatorname{Nil}(R)$ such that $s_{1} s_{2} s_{3} \gamma g(b)=s_{1} s_{2} s_{3} g_{2} \beta(b)=s_{1} s_{2} s_{3} g_{2}\left(b_{2}\right)=0$. Hence

$$
g(b) \in \operatorname{NKer}(\gamma)
$$

Since $\operatorname{NKer}(\gamma)=\operatorname{NIm}\left(\gamma_{1}\right)$, there are some $c_{1} \in C_{1}$ and $s_{4} \in R \backslash N i l(R)$ such that $s_{4} g(b)=s_{4} \gamma_{1}\left(c_{1}\right)$. Since $c_{1} \in C_{1}=\operatorname{NIm}\left(g_{1}\right)$, there are some $b_{1} \in B_{1}$ and $s_{5} \in R \backslash N i l(R)$ such that $s_{5} c_{1}=s_{5} g_{1}\left(b_{1}\right)$. Thus $s_{4} s_{5} s_{6} g(b)=s_{4} s_{5} s_{6} \gamma_{1} g_{1}\left(b_{1}\right)=$ $s_{4} s_{5} s_{6} g \beta_{1}\left(b_{1}\right)$ for some $s_{6} \in R \backslash \operatorname{Nil}(R)$. So

$$
b-\beta_{1}\left(b_{1}\right) \in \operatorname{NKer}(g)
$$

Since $\operatorname{NKer}(g)=\operatorname{NIm}(f)$, there are some $a \in A$ and $s_{7} \in R \backslash N i l(R)$ such that $s_{7}\left(b-\beta_{1}\left(b_{1}\right)\right)=s_{7} f(a)$. Hence $s_{7} \beta\left(b-\beta_{1}\left(b_{1}\right)\right)=s_{7} \beta f(a)$. So $s_{7} s_{8} \beta(b)=$ $s_{7} s_{8} \beta f(a)=s_{7} s_{8} f_{2} \alpha(a)$ for some $s_{8} \in R \backslash N i l(R)$. Thus we have that $s_{2} s_{7} b_{2}=$ $s_{2} s_{7} \beta(b)=s_{2} s_{7} f_{2} \alpha(a)$. Therefore $b_{2} \in \operatorname{NIm}\left(f_{2}\right)$, which implies that

$$
\operatorname{NKer}\left(g_{2}\right) \subseteq \operatorname{NIm}\left(f_{2}\right)
$$

Conversely, for any $a_{2} \in A_{2}=\operatorname{NIm}(\alpha)$, there are some $a \in A$ and $s \in$ $R \backslash \operatorname{Nil}(R)$ such that $s a_{2}=s \alpha(a)$. Hence

$$
s^{\prime} s g_{2} f_{2}\left(a_{2}\right)=s^{\prime} s g_{2} f_{2}(\alpha(a))=s^{\prime} s g_{2} \beta f(a)=s^{\prime} s \gamma g f(a)=0
$$

for some $s^{\prime} \in R \backslash N i l(R)$. Thus $f_{2}\left(a_{2}\right) \in \operatorname{NKer}\left(g_{2}\right)$, which implies that $\operatorname{Im}\left(f_{2}\right) \subseteq$ $\operatorname{NKer}\left(g_{2}\right)$. We have that $\operatorname{NIm}\left(f_{2}\right)=\operatorname{Im}\left(f_{2}\right)+\operatorname{Ntor}\left(B_{2}\right) \subseteq \operatorname{NKer}\left(g_{2}\right)$. Therefore

$$
\operatorname{NKer}\left(g_{2}\right)=\operatorname{NIm}\left(f_{2}\right)
$$

For any $c_{2} \in C_{2}=\operatorname{NIm}(\gamma)$, there are some $c \in C$ and $s \in R \backslash N i l(R)$ such that $s c_{2}=s \gamma(c)$. Since $c \in C=\operatorname{NIm}(g)$, we have that $s_{1} c=s_{1} g(b)$ for some $b \in B, s_{1} \in R \backslash \operatorname{Nil}(R)$. Thus

$$
s s_{1} c_{2}=s s_{1} \gamma g(b)=s s_{1} g_{2} \beta(b)
$$

that is, $c_{2} \in \operatorname{NIm}\left(g_{2}\right)$. So

$$
\operatorname{NIm}\left(g_{2}\right)=C_{2}
$$

Therefore, the third row is also nonnil-exact.
(b) Similar to (a), we can show (b) by diagram-chases.

Using known nonnil-commutative diagrams, we can transfer related properties between modules. However, a given diagram is often not nonnil-commutative, and so we have to adapt the nonnil-commutative diagram to complete the job. An R-module M is said to be NN-torsion-free if it is nonnil-isomorphic to some nonnil-torsion-free module.

Theorem 2.7. Consider the following nonnil-commutative diagram of R-modules and homomorphisms with nonnil-exact rows:

where the square on the left is nonnil-commutative and C^{\prime} is NN-torsionfree. Then there is $\gamma: C \rightarrow C^{\prime}$ such that the square on the right is nonnilcommutative.

Proof. Suppose that $C^{\prime} \stackrel{N}{\sim} D, D$ is a nonnil-torsion-free module and the following diagram

is nonnil-commutative. Let $c \in C$. Since g is a nonnil-epimorphism, there are $b \in B$ and $s \in R \backslash N i l(R)$ such that $s g(b)=s c$. Define

$$
\gamma(c)=\nu \mu g^{\prime} \beta(b)
$$

If $s g(b)=s c=0$, then there exist $a \in A$ and $s_{1} \in R \backslash N i l(R)$ such that $s_{1} f(a)=s_{1} b$. Thus

$$
s_{2} s_{1} \mu g^{\prime} \beta(b)=s_{2} s_{1} \mu g^{\prime} \beta f(a)=s_{2} s_{1} \mu g^{\prime} f^{\prime} \alpha(a)=0
$$

for some $s_{2} \in R \backslash N i l(R)$. Since D is a nonnil-torsion-free module, $\mu g^{\prime} \beta(b)=0$. Hence $\gamma(c)=\nu \mu g^{\prime} \beta(b)=0$. Then γ is a well-defined homomorphism. It is easy to see that the square on the right is nonnil-commutative.

If the sequence $A^{\prime} \xrightarrow{f^{\prime}} B^{\prime} \xrightarrow{g^{\prime}} C^{\prime}$ is only a nonnil-complex, then the result in Theorem 2.7 also holds.

Theorem 2.8. Consider the following nonnil-commutative diagram of R-modules and homomorphisms with nonnil-exact rows:

where the square on the right is nonnil-commutative and A^{\prime} is NN -torsion-free. Then there is $\alpha: A \rightarrow A^{\prime}$ such that the square on the left is nonnil-commutative.

Proof. Suppose that $A^{\prime} \stackrel{N}{\sim} L, L$ is a nonnil-torsion-free module and the following diagram

is nonnil-commutative. Let $a \in A$. Then $s_{1} g^{\prime} \beta f(a)=s_{1} \gamma g f(a)=0$ for some $s_{1} \in R \backslash \operatorname{Nil}(R)$. Thus there are $a^{\prime} \in A^{\prime}$ and $s_{2} \in R \backslash N i l(R)$ such that $s_{2} f^{\prime}\left(a^{\prime}\right)=s_{2} \beta f(a)$. Define

$$
\alpha(a)=\nu \mu\left(a^{\prime}\right)
$$

Since L is a nonnil-torsion-free module, we have $\alpha(a)=\nu \mu\left(a^{\prime}\right)=0$ if $a=0$. Therefore, α is a well-defined homomorphism. It is easy to see that the square on the left is nonnil-commutative.

If the sequence $A \xrightarrow{f} B \xrightarrow{g} C$ is only a nonnil-complex, then the result in Theorem 2.8 also holds.

Theorem 2.9. The following diagram with a nonnil-exact row:

where C is NN-torsion-free, can be completed to the following nonnil-commutative diagram with nonnil-exact rows:

Proof. Suppose that $C \stackrel{N}{\sim} D, D$ is a nonnil-torsion-free module and the following diagram

is nonnil-commutative. Define $N=\{(b,-e) \mid s b=s f(a)$, $s e=\operatorname{sh}(a), a \in$ $A, s \in R \backslash N i l(R)\}$ and $M=(B \oplus E) / N$. For $b \in B$ and $e \in E$, define

$$
\alpha(e)=(0, e)+N, \quad \beta(b)=(b, 0)+N .
$$

Then $\alpha h=\beta f$. Therefore, the square on the left is commutative and thus it is nonnil-commutative.

Define $\gamma: M \rightarrow C$ by $\gamma((b, e)+N)=\nu \mu g(b)$. If $(b, e) \in N$, then there are $a \in A$ and $s_{1} \in R \backslash \operatorname{Nil}(R)$ such that $s_{1} f(a)=s_{1} b$ and $s_{1} h(a)=-s_{1} e$. So $s_{1} s_{2} g(b)=s_{1} s_{2} g f(a)=0$ for some $s_{2} \in R \backslash N i l(R)$. Since D is a nonnil-torsionfree module, we have $\mu g(b)=0$. Thus

$$
\gamma((b, e)+N)=\nu \mu g(b)=0 .
$$

Therefore, γ is a well-defined map.
For any $b \in B$, we have $g(b) \in C$ and there exists an element $s_{3} \in R \backslash \operatorname{Nil}(R)$ such that $s_{3} \nu \mu g(b)=s_{3} g(b)$. So

$$
s_{3} \gamma \beta(b)=s_{3} \nu \mu g(b)=s_{3} g(b) .
$$

Therefore, the square on the right is nonnil-commutative.
Since g is a nonnil-epimorphism, γ is also a nonnil-epimorphism.
If $\alpha(e)=0$, then $(0, e) \in N$. So there exist $a \in A$ and $s_{4} \in R \backslash \operatorname{Nil}(R)$ such that $s_{4} f(a)=0$ and $s_{4} h(a)=-s_{4} e$. Since f is a nonnil-monomorphism, $s_{5} a=0$ for some $s_{5} \in R \backslash N i l(R)$. Thus $-s_{5} s_{4} e=s_{5} s_{4} h(a)=0$ and hence $e \in \operatorname{Ntor}(E)$. Therefore, α is a nonnil-monomorphism.

It is easy to see that $\gamma \alpha=0$. Thus $\operatorname{NIm}(\alpha) \subseteq \operatorname{NKer}(\gamma)$.
If $s_{6} \gamma((b, e)+N)=s_{6} \nu \mu g(b)=s_{6} g(b)=0$ for some $s_{6} \in R \backslash N i l(R)$, then there are $a \in A$ and $s_{7} \in R \backslash N i l(R)$ such that $s_{7} f(a)=s_{7} b$. So

$$
\begin{aligned}
s_{7}(b, e)+N & =s_{7}(f(a), e)+N \\
& =s_{7}[(f(a),-h(a))+(0, e+h(a))]+N \\
& =s_{7}(0, e+h(a))+N \\
& =s_{7} \alpha(e+h(a)) .
\end{aligned}
$$

Therefore, $\operatorname{NKer}(\gamma)=\operatorname{NIm}(\alpha)$, that is, the bottom row is nonnil-exact.

Theorem 2.10. The following diagram with a nonnil-exact row:

can be completed to the following nonnil-commutative diagram with nonnilexact rows:

Proof. Set

$$
L=\{(b, e) \in B \oplus E \mid \operatorname{sg}(b)=\operatorname{sh}(e), s \in R \backslash N i l(R)\}
$$

and define

$$
\beta(b, e)=b, \gamma(b, e)=e, b \in B, e \in E
$$

Then trivially, for $(b, e) \in B \oplus E$, there exists $s \in R \backslash \operatorname{Nil}(R)$ such that $\operatorname{sg} \beta(b, e)=\operatorname{sh} \gamma(b, e)$. Define $\alpha: A \rightarrow L$ by $\alpha(a)=(f(a), 0)$. Then $\beta \alpha=f$. Since f is a nonnil-monomorphism, α is a nonnil-monomorphism.

For $e \in E$, since g is a nonnil-epimorphism, we choose $b \in B$ and $s_{1} \in$ $R \backslash N i l(R)$ such that $s_{1} g(b)=s_{1} h(e)$. Then $(b, e) \in L$ and $\gamma(b, e)=e$. Therefore, γ is an epimorphism.

For $a \in A$, we have $\gamma \alpha(a)=\gamma(f(a), 0)=\gamma(0)=0$. And for $(b, e) \in \operatorname{NKer}(\gamma)$, we have some $s_{2} \in R \backslash \operatorname{Nil}(R)$ such that $s_{2} \gamma(b, e)=s_{2} e=0$. There exists some $s_{3} \in R \backslash N i l(R)$ such that $s_{2} s_{3} g(b)=s_{2} s_{3} h(e)=0$. Thus

$$
b \in \operatorname{NKer}(g)
$$

Since $\operatorname{NKer}(g)=\operatorname{NIm}(f)$, there exist $a \in A$ and $s_{4} \in R \backslash N i l(R)$ such that $s_{4} b=s_{4} f(a)$. So we have

$$
s_{2} s_{4}(b, e)=s_{2} s_{4}(f(a), e)=s_{2} s_{4}(f(a), 0)=s_{2} s_{4} \alpha(a)
$$

Therefore, the top row is nonnil-exact.
Theorem 2.11. Consider the following diagram Γ of modules and homomorphisms

and the sequence Δ of modules and homomorphisms

$$
0 \rightarrow A \xrightarrow{\sigma} B \oplus C \xrightarrow{\rho} D \rightarrow 0,
$$

where $\sigma(a)=(\alpha(a),-\beta(a))$ and $\rho(b, c)=f(b)+g(c)$ for $a \in A, b \in B, c \in C$.
(a) The homomorphism ρ is a nonnil-epimorphism if and only if

$$
D=\operatorname{NIm}(f)+\operatorname{NIm}(g) .
$$

(b) The homomorphism σ is a nonnil-monomorphism if and only if

$$
\operatorname{NKer}(\alpha) \cap \operatorname{NKer}(\beta)=\operatorname{Ntor}(A) .
$$

(c) The sequence Δ is a nonnil-complex if and only if the diagram Γ is nonnil-commutative.
(d) $\operatorname{NKer}(\rho) \subseteq \operatorname{NIm}(\sigma)$ if and only if there exist $a \in A$ and $s \in R \backslash N i l(R)$ such that $s b=s \alpha(a)$ and $s c=s \beta(a)$ if $s^{\prime} f(b)=s^{\prime} g(c)$ for some $s^{\prime} \in$ $R \backslash \operatorname{Nil}(R)$.

Proof. (a) If ρ is a nonnil-epimorphism, then there exist $b \in B, c \in C$ and $s_{1} \in R \backslash N i l(R)$ such that $s_{1} d=s_{1} \rho(b, c)=s_{1} f(b)+s_{1} g(c)$ for any element $d \in D$. Thus

$$
d=f(b)+g(c)+t \in \operatorname{NIm}(f)+\operatorname{NIm}(g),
$$

where $t \in \operatorname{Ntor}(D)$. Therefore $D=\operatorname{NIm}(f)+\operatorname{NIm}(g)$.
Conversely, suppose $D=\operatorname{NIm}(f)+\operatorname{NIm}(g)$. For any $d \in D$, there exist $d_{1} \in \operatorname{NIm}(f)$ and $d_{2} \in \operatorname{NIm}(g)$ such that $d=d_{1}+d_{2}$. Hence there exist $b \in B$, $c \in C$ and $s_{2}, s_{3} \in R \backslash N i l(R)$ such that $s_{2} d_{1}=s_{2} f(b)$ and $s_{3} d_{2}=s_{3} g(c)$. Thus we have

$$
s_{2} s_{3} d=s_{2} s_{3}(f(b)+g(c))=s_{2} s_{3} \rho(b, c) .
$$

So $d \in \operatorname{NIm}(\rho)$. Therefore, the homomorphism ρ is a nonnil-epimorphism.
(b) It is clear that $\operatorname{Ntor}(A) \subseteq \operatorname{NKer}(\alpha) \cap \operatorname{NKer}(\beta)$. If $a \in \operatorname{NKer}(\alpha) \cap \operatorname{NKer}(\beta)$, then there exist $s_{4}, s_{5} \in R \backslash N i l(R)$ such that $s_{4} \alpha(a)=0, s_{5} \beta(a)=0$. So

$$
s_{4} s_{5} \sigma(a)=s_{4} s_{5}(\alpha(a),-\beta(a))=0 .
$$

Since σ is a nonnil-monomorphism, we have $a \in \operatorname{Ntor}(A)$. Therefore, $\operatorname{NKer}(\alpha) \cap$ $\operatorname{NKer}(\beta)=\operatorname{Ntor}(A)$.

Conversely, if $s_{6} \sigma(a)=s_{6}(\alpha(a),-\beta(a))=0$ for some $s_{6} \in R \backslash N i l(R)$, then $a \in \operatorname{NKer}(\alpha) \cap \operatorname{NKer}(\beta)=\operatorname{Ntor}(A)$. Therefore, σ is a nonnil-monomorphism.
(c) The sequence Δ is a nonnil-complex if and only if $\operatorname{NIm}(\sigma) \subseteq \operatorname{NKer}(\rho)$, if and only if there exists $s_{7} \in R \backslash N i l(R)$ such that

$$
s_{7} \rho \sigma(a)=s_{7}(f \alpha(a)-g \beta(a))=0,
$$

if and only if the diagram Γ is nonnil-commutative.
(d) Suppose that $\operatorname{NKer}(\rho) \subseteq \operatorname{NIm}(\sigma)$. If $s^{\prime} f(b)=s^{\prime} g(c)$ for some $s^{\prime} \in$ $R \backslash N i l(R)$, then $s^{\prime} \rho(b, c)=0$. Hence $(b, c) \in \operatorname{NKer}(\rho) \subseteq \operatorname{NIm}(\sigma)$. Thus there exist an element $a \in A$ and $s \in R \backslash \operatorname{Nil}(R)$ such that $s(b, c)=s(\alpha(a), \beta(a))$.

Conversely, if $(b, c) \in \operatorname{NKer}(\rho)$, that is, $s^{\prime} f(b)=s^{\prime} g(-c)$ for some $s^{\prime} \in$ $R \backslash \operatorname{Nil}(R)$, then there exist $a \in A$ and $s \in R \backslash \operatorname{Nil(R)}$ such that $s b=s \alpha(a)$ and $-s c=s \beta(a)$. Thus $s(b, c)=s \sigma(a)$. Therefore $(b, c) \in \operatorname{NIm}(\sigma)$, which implies that $\operatorname{NKer}(\rho) \subseteq \operatorname{NIm}(\sigma)$.

References

[1] D. F. Anderson and A. R. Badawi, On ϕ-Prüfer rings and ϕ-Bezout rings, Houston J. Math. 30 (2004), no. 2, 331-343.
[2] D. F. Anderson and A. R. Badawi, On ϕ-Dedekind rings and ϕ-Krull rings, Houston J. Math. 31 (2005), no. 4, 1007-1022.
[3] K. Bacem and B. Ali, Nonnil-coherent rings, Beitr. Algebra Geom. 57 (2016), no. 2, 297-305. https://doi.org/10.1007/s13366-015-0260-8
[4] A. R. Badawi, On ϕ-pseudo-valuation rings, in Advances in commutative ring theory (Fez, 1997), 101-110, Lecture Notes in Pure and Appl. Math., 205, Dekker, New York, 1999.
[5] A. R. Badawi, On Φ-pseudo-valuation rings. II, Houston J. Math. 26 (2000), no. 3, 473-480.
[6] A. R. Badawi, On ϕ-chained rings and ϕ-pseudo-valuation rings, Houston J. Math. 27 (2001), no. 4, 725-736.
[7] A. R. Badawi, On divided rings and ϕ-pseudo-valuation rings, in Commutative rings, 5-14, Nova Sci. Publ., Hauppauge, NY, 2002.
[8] A. R. Badawi, On nonnil-Noetherian rings, Comm. Algebra 31 (2003), no. 4, 1669-1677. https://doi.org/10.1081/AGB-120018502
[9] A. R. Badawi, On rings with divided nil ideal: a survey, in Commutative algebra and its applications, 21-40, Walter de Gruyter, Berlin, 2009.
[10] A. R. Badawi and D. E. Dobbs, Strong ring extensions and ϕ-pseudo-valuation rings, Houston J. Math. 32 (2006), no. 2, 379-398.
[11] A. R. Badawi and A. Jaballah, Some finiteness conditions on the set of overrings of a ϕ-ring, Houston J. Math. 34 (2008), no. 2, 397-408.
[12] A. R. Badawi and T. G. Lucas, Rings with prime nilradical, in Arithmetical properties of commutative rings and monoids, 198-212, Lect. Notes Pure Appl. Math., 241, Chapman \& Hall/CRC, Boca Raton, FL, 2005. https://doi.org/10.1201/9781420028249.ch11
[13] A. R. Badawi and T. G. Lucas, On Φ-Mori rings, Houston J. Math. 32 (2006), no. 1, 1-32.
[14] A. Benhissi, Nonnil-Noetherian rings and formal power series, Algebra Colloq. 27 (2020), no. 3, 361-368. https://doi.org/10.1142/S1005386720000292
[15] A. Y. Darani and M. Rahmatinia, On ϕ-Schreier rings, J. Korean Math. Soc. 53 (2016), no. 5, 1057-1075. https://doi.org/10.4134/JKMS.j150380
[16] S. Hizem and A. Benhissi, Nonnil-Noetherian rings and the SFT property, Rocky Mountain J. Math. 41 (2011), no. 5, 1483-1500. https://doi.org/10.1216/RMJ-2011-41-51483
[17] R. E. Khalfaoui and N. Mahdou, The ϕ-Krull dimension of some commutative extensions, Comm. Algebra 48 (2020), no. 9, 3800-3810. https://doi.org/10.1080/ 00927872.2020 .1747479
[18] A. E. Khalfi, H. Kim, and N. Mahdou, On ϕ-piecewise Noetherian rings, Comm. Algebra 49 (2021), no. 3, 1324-1337. https://doi.org/10.1080/00927872.2020.1834571
[19] H. Kim and F. Wang, On ϕ-strong Mori rings, Houston J. Math. 38 (2012), no. 2, 359-371.
[20] C. Lomp and A. Sant'Ana, Comparability, distributivity and non-commutative ϕ-rings, in Groups, rings and group rings, 205-217, Contemp. Math., 499, Amer. Math. Soc., Providence, RI, 2009. https://doi.org/10.1090/conm/499/09804
[21] X. Yang and Z. K. Liu, On nonnil-Noetherian rings, Southeast Asian Bull. Math. 33 (2009), no. 6, 1215-1223.
[22] X. Zhang, W. Zhao, and F. Wang, On ϕ-flat cotorsion theory J. Guangxi Normal University 39 (2021), no. 2, 119-124.
[23] W. Zhao, A few kinds of commutative rings with the nilradical as prime ideal, J. Neijiang Normal University 30 (2015), no. 6, 11-14.
[24] W. Zhao, On Φ-flat modules and Φ-Prüfer rings, J. Korean Math. Soc. 55 (2018), no. 5, 1221-1233. https://doi.org/10.4134/JKMS.j170667
[25] W. Zhao, On ϕ-exact sequences and ϕ-projective modules, J. Korean Math. Soc. 58 (2021), no. 6, 1513-1528. https://doi.org/10.4134/JKMS.j210180
[26] W. Zhao, On nonnil-commutative diagrams and nonnil-projective modules, Comm. Algebra 48 (2022), no. 5, 3079-3090.
[27] W. Zhao, F. Wang, and G. Tang, On φ-von Neumann regular rings, J. Korean Math. Soc. 50 (2013), no. 1, 219-229. https://doi.org/10.4134/JKMS.2013.50.1.219
[28] W. Zhao, F. Wang, and X. Zhang, On Ф-projective modules and Φ-Prüfer rings, Comm. Algebra 48 (2020), no. 7, 3079-3090. https://doi.org/10.1080/00927872. 2020. 1729362

Wei Zhao
School of Mathematics
Aba Teachers University
Aba 623002, P. R. China
Email address: zw9c248@163.com
Dechuan Zhou
Department of Mathematics
Southwest University of Science and Technology
Mianyang 621010, P. R. China
Email address: zdechuan11119@163.com

[^0]: Received October 10, 2022; Revised May 1, 2023; Accepted August 1, 2023.
 2020 Mathematics Subject Classification. Primary 13C05, 13C10, 13C12.
 Key words and phrases. Nonnil-commutative diagram, nonnil-exact sequence.
 This work was financially supported by the National Natural Science Foundation of China 12061001, 12101515, Sichuan Science and Technology Program 2023NSFSC0074, and Aba Teachers University AS-HBZ2023-34, AS-HBZ2023-35, 20210103002, 20212001128.

