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ON NONNIL-EXACT SEQUENCES AND

NONNIL-COMMUTATIVE DIAGRAMS

Wei Zhao and Dechuan Zhou

Abstract. In this paper, we investigate the nonnil-exact sequences and

nonnil-commutative diagrams and show that they behave in a way similar
to the classical ones in Abelian categories.

1. Introduction

Throughout this paper, it is assumed that all rings are commutative and
associative with non-zero identity and all modules are unitary. If R is a ring,
then Nil(R) denotes the set of nilpotent elements of R, and Z(R) denotes the
set of zero-divisors of R. A ring with Nil(R) being divided prime is called
a ϕ-ring. In this paper, if the nilradical Nil(R) of a ring R is prime, then
R is called a PN-ring. If Z(R) = Nil(R), then R is called a ZN-ring. We
recommend [1–20] for the study of the ring-theoretic characterizations on ϕ-
rings, and [21–28] for the study of the module-theoretic characterizations on
ϕ-rings.

In order to extend the homological methods to commutative rings with the
nilradical as a prime ideal, the authors in [26] introduced nonnil-exact sequences
and nonnil-commutative diagrams. Since commutative diagrams play an im-
portant role in homological theory, we investigate nonnil-commutative diagrams
in order to lay the foundation for future work on homological theories over PN-
rings. We show that nonnil-commutative diagrams behave in a way similar to
the classical ones. For example, Five Lemma, Snake Lemma and 3× 3 Lemma
show the same pattern in PN-rings. To this end, we introduce some necessary
concepts and symbols.

Let R be a PN-ring and M an R-module. We set

NN(R) = {I | I is a nonnil ideal of R},
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and

Ntor(M) = {x ∈ M | Ix = 0 for some I ∈ NN(R)}.
If Ntor(M) = M , M is called a nonnil-torsion R-module, and if Ntor(M) = 0,
M is called a nonnil-torsion-free R-module. Let f : A → B be a homomorphism
of R-modules. Set

NKer(f) = {a ∈ A | sf(a) = 0 for some s ∈ R\Nil(R)},

NIm(f) = {b ∈ B | sb = sf(a) for some a ∈ A and s ∈ R\Nil(R)}.
Since Nil(R) is a prime ideal, NKer(f) is a submodule of A and NIm(f) is a
submodule of B. We set NCoker(f) = B/NIm(f).

Recall from [26] that the submodule NKer(f) of A is called the nonnil-
kernel of f and the submodule NIm(f) of B is called the nonnil-image of f .
The homomorphism f : A → B is called a nonnil-monomorphism if NKer(f) =
Ntor(A) and it is called a nonnil-epimorphism if NIm(f) = B. A sequence of

R-modules and homomorphisms A
f→ B

g→ C is called a nonnil-complex (resp.,
a nonnil-exact sequence) if NIm(f) ⊆ NKer(g) (resp., NIm(f) = NKer(g)).
Every R-module M has a free nonnil-resolution, that is, there exists a nonnil-
exact sequence

· · · −→ Fn
dn−→ Fn−1 −→ · · · −→ F1

d1−→ F0
d0−→ M → 0,

where each Fi is free.
Let f : A → B, g : B → D, h : A → C and k : C → D be homomorphisms

of R-modules. Then the following diagram

A
f //

h
��

B

g
��

C
k
// D

is said to be nonnil-commutative if NIm(gf − kh) = Ntor(D), that is, there
exists sa ∈ R\Nil(R) such that sagf(a) = sakh(a) for any a ∈ A, where the
choice of sa depends on a.

An R-module homomorphism f : A → B is called a nonnil-isomorphism if
there exists a homomorphism g : B → A such that NIm(1A − gf) = Ntor(A)
and NIm(1B − fg) = Ntor(B), that is, the following diagram

A
f //

1A

��

B

g��
1B

��
A

f
// B

is nonnil-commutative. If there exists a nonnil-isomorphism f : A → B, we say

that A,B are nonnil-isomorphic, denoted by A
N≃ B. An R-module homomor-

phism f : A → B is called a weakly nonnil-isomorphism if NKer(f) = Ntor(A)
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and NIm(f) = B, in this case, we say that A is weakly nonnil-isomorphic to B

by f , denoted by f : A
WN

→̃ B.
In this paper, R always denotes a PN-ring.

2. Main results

Theorem 2.1 (Five Lemma in PN-rings). Consider the following nonnil-
commutative diagram with nonnil-exact rows:

D
h //

δ
��

A
f //

α
��

B
g //

β
��

C
k //

γ
��

E

µ
��

D′ h′
// A′ f ′

// B′ g′
// C ′ k′

// E′

(a) If α and γ are nonnil-monomorphisms and δ is a nonnil-epimorphism,
then β is a nonnil-monomorphism.

(b) If α and γ are nonnil-epimorphisms and µ is a nonnil-monomorphism,
then β is a nonnil-epimorphism.

(c) If δ is a nonnil-epimorphism, µ is a nonnil-monomorphism and α, γ are
weakly nonnil-isomorphisms, then β is a weakly nonnil-isomorphism.

(d) If δ, α, γ, µ are weakly nonnil-isomorphisms, then β is a weakly nonnil-
isomorphism.

Proof. (a) Let b ∈ NKer(β). Then there is some s ∈ R\Nil(R) such that
sβ(b) = 0. Since the diagram is nonnil-commutative, we have that s1sγg(b) =
s1sg

′β(b) = 0 for some s1 ∈ R\Nil(R). Thus

g(b) ∈ NKer(γ).

Since NKer(γ) = Ntor(C), there is some s2 ∈ R\Nil(R) such that s2g(b) = 0.
Thus

b ∈ NKer(g).

Since NKer(g) = NIm(f), there are some a ∈ A and s3 ∈ R\Nil(R) such that
s3b = s3f(a). Hence ss3s4f

′α(a) = ss3s4βf(a) = ss3s4β(b) = 0 for some
s4 ∈ R\Nil(R). Thus

α(a) ∈ NKer(f ′).

Since NKer(f ′) = NIm(h′), there are some d′ ∈ D′ and s5 ∈ R\Nil(R) such
that s5α(a) = s5h

′(d′). Since δ is a nonnil-epimorphism, there are some d ∈ D
and s6 ∈ R\Nil(R) such that s6d

′ = s6δ(d). So we have that s5s6s7α(a) =
s5s6s7h

′(d′) = s5s6s7h
′δ(d) = s5s6s7αh(d) for some s7 ∈ R\Nil(R). Hence

a− h(d) ∈ NKer(α).

Thus there exists some s8 ∈ R\Nil(R) such that s8a = s8h(d). Since s9s8s3b =
s9s8s3f(a) = s9s8s3fh(d) = 0 for some s9 ∈ R\Nil(R),

b ∈ Ntor(B).
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Therefore,

NKer(β) = Ntor(B),

which implies that β is a nonnil-monomorphism.
(b) Let b′ ∈ B′. Since γ is a nonnil-epimorphism, there are some c ∈ C and

s ∈ R\Nil(R) such that

sγ(c) = sg′(b′).

Nonnil-commutativity of the right square gives s1s2sµk(c) = s1s2sk
′γ(c) =

s1s2sk
′g′(b′) = 0 for some s1, s2 ∈ R\Nil(R). Since µ is a nonnil-mono-

morphism, s3k(c) = 0 for some s3 ∈ R\Nil(R). Because of the nonnil-exactness
of the top row, there are some b ∈ B and s4 ∈ R\Nil(R) such that

s4g(b) = s4c.

Hence ss4s5g
′(b′) = ss4s5γ(c) = ss4s5γg(b) = ss4s5g

′β(b) for some s5 ∈
R\Nil(R). Hence

b′ − β(b) ∈ NKer(g′).

Since NKer(g′) = NIm(f ′), s6(b
′ − β(b)) = s6f

′(a′) for some a′ ∈ A′, s6 ∈
R\Nil(R) by the nonnil-exactness of the bottom row. Since α is a nonnil-
epimorphism, there are some a ∈ A and s7 ∈ R\Nil(R) with s7α(a) = s7a

′.
Hence s6s7s8(b

′−β(b)) = s6s7s8f
′(a′) = s6s7s8f

′α(a) = s6s7s8βf(a) for some
s8 ∈ R\Nil(R). Thus s6s7s8b

′ = s6s7s8β(b+ f(a)). Therefore

b′ ∈ NIm(β),

which implies that β is a nonnil-epimorphism.
It is easy to see that (c) follows from (a) and (b), while (d) follows from

(c). □

Theorem 2.2 (Snake Lemma in PN-rings). Consider the following nonnil-
commutative diagram with nonnil-exact rows:

A
f //

α
��

B
g //

β
��

C //

γ
��

0

0 // A′ f ′
// B′ g′

// C ′

(a) There is a nonnil-exact sequence

NKer(α) → NKer(β) → NKer(γ) → NCoker(α) → NCoker(β) → NCoker(γ).

(b) If f is a nonnil-monomorphism, then

0→NKer(α)→NKer(β)→NKer(γ)→NCoker(α)→NCoker(β)→NCoker(γ)

is nonnil-exact.
(c) If g′ is a nonnil-epimorphism, then

NKer(α)→NKer(β)→NKer(γ)→NCoker(α)→NCoker(β)→NCoker(γ)→0

is nonnil-exact.
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Proof. (a) The proof is completed by the following three steps.
(1) Let a ∈ NKer(α). Then there exists s ∈ R\Nil(R) such that sα(a) = 0.

Because of nonnil-commutativity, there exists some s1 ∈ R\Nil(R) such that
ss1βf(a) = ss1f

′α(a) = 0. Hence f(a) ∈ NKer(β). Define f1 : NKer(α) →
NKer(β) by

f1(a) = f(a).

Then f1 is well-defined. Similarly, we get a homomorphism g1 : NKer(β) →
NKer(γ) by g1(b) = g(b) for b ∈ B.

For a′ ∈ A′, define

f2(a
′ +NIm(α)) = f ′(a′) + NIm(β).

It is easy to check that f2 : A′/NIm(α) → B′/NIm(β) is well-defined. In
fact, if a′ ∈ NIm(α), then sa′ = sα(a) for some a ∈ A and s ∈ R\Nil(R).
So there exists s1 ∈ R\Nil(R) such that ss1f

′(a′) = ss1f
′α(a) = ss1βf(a).

Thus f ′(a′) ∈ NIm(β). Similarly, we get a homomorphism g2 : B′/NIm(β) →
C ′/NIm(γ) by g2(b

′ +NIm(β)) = g′(b′) + NIm(γ) for b′ ∈ B′.
Let c ∈ NKer(γ). Since g is a nonnil-epimorphism, there exist b ∈ B and

s, s1 ∈ R\Nil(R) such that s1γ(c) = 0 and sg(b) = sc. Thus ss1s2g
′β(b) =

ss1s2γg(b) = ss1s2γ(c) = 0 for some s2 ∈ R\Nil(R). Hence β(b) ∈ NKer(g′) =
NIm(f ′). In this sense, there exist some a′ ∈ A′ and s3 ∈ R\Nil(R) such that
s3f

′(a′) = s3β(b). Define

δ(c) = a′ +NIm(α).

If sg(b) = 0, then there are some a ∈ A and s4 ∈ R\Nil(R) such that s4f(a) =
s4b by the fact that NIm(f) = NKer(g). Since s4s5β(b) = s4s5βf(a) =
s4s5f

′α(a) for some s5 ∈ R\Nil(R), we have s6a
′ = s6α(a) for some s6 ∈

R\Nil(R) and a′ ∈ NIm(α). Therefore, δ is well-defined.
(2) Next, we show that the following sequence is a nonnil-complex of R-

modules and homomorphisms:

NKer(α)
f1→ NKer(β)

g1→ NKer(γ)
δ→ NCoker(α)

f2→ NCoker(β)
g2→ NCoker(γ).

For any a ∈ NKer(α), we have that s1g1f1(a) = s1gf(a) = 0 for some
s1 ∈ R\Nil(R). Similarly, s2g2f2(a

′ +NIm(α)) = s2g
′f ′(a′) + NIm(γ) = 0 for

some s2 ∈ R\Nil(R).
Let b ∈ NKer(β). Then there exists some s ∈ R\Nil(R) such that sβ(b) = 0.

Hence β(b) ∈ NKer(g′) = NIm(f ′). Thus there are some a′ ∈ A′ and s3 ∈
R\Nil(R) such that s3f

′(a′) = s3β(b) = 0. We have that a′ ∈ NKer(f ′) =
Ntor(A′). So

δg1(b) = a′ +NIm(α) = 0.

Let c ∈ NKer(γ). Then there exists some s ∈ R\Nil(R) such that sγ(c) =
0 and sc = sg(b). Because there exist some s1, s2 ∈ R\Nil(R) such that
s1s2g

′β(b) = s1s2γg(b) = s1s2γ(c) = 0, β(b) ∈ NKer(g′) = NIm(f ′). Hence we
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have that s3β(b) = s3f
′(a′), where s3 ∈ R\Nil(R). Thus

f2δ(c) = f2(a
′ +NIm(α)) = f ′(a′) + NIm(β) = 0.

(3) Notice we have that

NKer(g1) = {b ∈ NKer(β) | sg1(b) = sg(b) = 0, s ∈ R\Nil(R)}
= NKer(β) ∩NKer(g)

and

NIm(f1) = {b ∈ NKer(β) | sb = sf1(a) = sf(a), a ∈ NKer(α), s ∈ R\Nil(R)}.
In verifying that NKer(g1) = NIm(f1), we show only that NKer(g1) ⊆

NIm(f1).
Let b ∈ NKer(g1). Then b ∈ NKer(β) and b ∈ NKer(g) = NIm(f). Thus

there exist some s ∈ R\Nil(R) and a ∈ NKer(α) such that sb = sf(a). Hence
ss1f

′α(a) = ss1βf(a) = ss1β(b) for some s1 ∈ R\Nil(R). So ss1s2f
′α(a) =

ss1s2β(b) = 0 for some s2 ∈ R\Nil(R). Thus

α(a) ∈ NKer(f ′) = Ntor(A′).

Since there exists some s3 ∈ R\Nil(R) such that s3α(a) = 0. In this sense,
b ∈ NIm(f1). Therefore NIm(f1) = NKer(g1).

Notice that

NIm(g1) = {c ∈ NKer(γ) | sc = sg1(b) = sg(b), b ∈ NKer(β), s ∈ R\Nil(R)}
and

NKer(δ) = {c ∈ NKer(γ) | sc = sg(b), s1β(b) = s1f
′(a′),

a′ ∈ NIm(α), s1 ∈ R\Nil(R)}.
Let c ∈ NKer(δ). Then c ∈ NKer(γ) and there exist some a′ ∈ NIm(α)

and s1 ∈ R\Nil(R) such that sc = sg(b1), s1β(b1) = s1f
′(a′). So there

exists some s2 ∈ R\Nil(R) such that s2a
′ = s2α(a). Thus we have that

s1s2β(b1) = s1s2f
′(a′) = s1s2f

′α(a) = s1s2βf(a). Hence b1−f(a) ∈ NKer(β).
Set

b = b1 − f(a).

We have that b ∈ NKer(β) and sc = sg1(b) = sg(b). Thus c ∈ NIm(g1), which
implies that NIm(g1) = NKer(δ).

Notice that

NKer(f2) = {a′+NIm(α) | sf2(a′+NIm(α))=0, a′∈A′, s∈R\Nil(R)}
= {a′+NIm(α) | sf ′(a′)∈NIm(β), a′∈A′, s∈R\Nil(R)}
= {a′+NIm(α) | s1sf ′(a′)=s1β(b), a

′∈A′, b∈B, s, s1∈R\Nil(R)}.
If s1sf

′(a′) = s1β(b), then s′s1sg
′β(b) = s′s1sg

′f ′(a′) = 0 for some s′ ∈
R\Nil(R). So we have that β(b) ∈ NKer(g′) = NIm(f ′). Thus sβ(b) = sf ′(a′1)
for some s ∈ R\Nil(R) and a′1 ∈ A′. Therefore, we have

NKer(f2) = {a′ +NIm(α) | sβ(b) = sf ′(a′), b ∈ B, a′ ∈ A′, s ∈ R\Nil(R)}.
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Set c = g(b). We have sγ(c) = sγg(b) = sg′f ′(a′) = 0. Hence c ∈ NKer(γ).
Therefore NKer(f2) = NIm(δ).

Similarly,

NKer(g2) = {b′ +NIm(β) | sγ(c) = sg′(b′), c ∈ C, b′ ∈ B′, s ∈ R\Nil(R)}.

Notice that

NIm(f2) = {b′ +NIm(β) | sb′ = sf ′(a′) + s1β(b),

a′ ∈ A′, b ∈ B, b′ ∈ B′, s, s1 ∈ R\Nil(R)}.

If b′ ∈ NKer(g2), then there exist c ∈ C, b′ ∈ B′ and s ∈ R\Nil(R) such
that sγ(c) = sg′(b′). Because c ∈ C = NIm(g), we have that s1c = s1g(b) for
some b ∈ B, s1 ∈ R\Nil(R). Thus

s1sg
′(b′) = s1sγ(c) = s1sγg(b) = s1sg

′β(b).

So

b′ − β(b) ∈ NKer(g′) = NIm(f ′).

Hence sb′ − sβ(b) = sf ′(a′) for some a′ ∈ A′, s ∈ R\Nil(R). We have b′ ∈
NIm(f2), which implies that NIm(f2) = NKer(g2).

(b) Consider that NKer(f1) = NKer(α) ∩NKer(f) = Ntor(A).
(c) Consider that NIm(g2) ⊇ (NIm(g′) + NIm(γ))/NIm(γ) = C ′/NIm(γ).

□

Corollary 2.3. Consider the following nonnil-commutative diagram with non-
nil-exact rows:

0 // A
f //

α
��

B
g //

β
��

C //

γ
��

0

0 // A′ f ′
// B′ g′

// C ′ // 0.

(a) If α is a nonnil-epimorphism, then the sequence

0 → NKer(α) → NKer(β) → NKer(γ) → 0

is nonnil-exact.
(b) If γ is a nonnil-monomorphism, then the sequence

0 → NCoker(α) → NCoker(β) → NCoker(γ) → 0

is nonnil-exact.

Proof. (a) It holds by Theorem 2.2.
(b) Suppose that γ is a nonnil-monomorphism. For a′+NIm(α) ∈ NKer(f2),

a′ ∈ A′, there exists s1 ∈ R\Nil(R) such that s1f
′(a′) = s1β(b), where b ∈ B.

Since the diagram is nonnil-commutative, we have some s2 ∈ R\Nil(R) such
that s2γg(b) = s2g

′β(b) = s2g
′f ′(a′) = 0. Thus

g(b) ∈ NKer(γ) = Ntor(C).
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Hence s3g(b) = 0 for some s3 ∈ R\Nil(R). So b ∈ NKer(g) = NIm(f), we
have some s4 ∈ R\Nil(R), a ∈ A such that s4b = s4f(a). It is clear that
s1s4f

′(a′) = s1s4β(b) = s1s4βf(a) = s1s4f
′α(a). So we have that

a′ − α(a) ∈ NKer(f ′) = Ntor(A′).

Hence there exists some s5 ∈ R\Nil(R) such that s5a
′ = s5α(a) and a′ ∈

NIm(α). Therefore a′ + NIm(α) = 0, which implies that 0 → NCoker(α) →
NCoker(β) → NCoker(γ) → 0 is nonnil-exact. □

Lemma 2.4. Let A
f→ B

g→ C be a nonnil-exact sequence of R-modules. If
A,C are nonnil-torsion, then B is also nonnil-torsion.

Proof. For any b ∈ B, since g(b) ∈ C is nonnil-torsion, sg(b) = 0 for some
s ∈ R\Nil(R). Hence b ∈ NKer(g) = NIm(f). So there are some a ∈ A and
s1 ∈ R\Nil(R) such that

s1b = s1f(a).

Since a ∈ A is nonnil-torsion, there is some s2 ∈ R\Nil(R) such that s2a = 0.
Thus

s1s2b = s1s2f(a) = 0.

Therefore b is nonnil-torsion, which implies that B is a nonnil-torsion R-
module. □

Corollary 2.5. Consider the following nonnil-commutative diagram with non-
nil-exact rows:

A
f //

α
��

B
g //

β
��

C //

γ
��

0

0 // A′ f ′
// B′ g′

// C ′

(a) If α and γ are nonnil-monomorphisms, then β is a nonnil-monomor-
phism.

(b) If α and γ are nonnil-epimorphisms, then β is a nonnil-epimorphism.
(c) If α and γ are weakly nonnil-isomorphisms, then β is a weakly nonnil-

isomorphism.

Proof. (a) If α and γ are nonnil-monomorphisms, then NKer(α) and NKer(γ)
are nonnil-torsion. So NKer(β) is also nonnil-torsion by Theorem 2.2 and
Lemma 2.4. Thus β is a nonnil-monomorphism.

(b) If α and γ are nonnil-epimorphisms, then NCoker(α) = NCoker(γ) = 0.
Hence A′ = NIm(α) and C ′ = NIm(γ). For any b′ ∈ B′, we have that

g2(b′) = g′(b′) = 0.

Thus g′(b′) ∈ NIm(γ). Hence sg′(b′) = sγ(c) for some c ∈ C, s ∈ R\Nil(R).
Suppose that s1c = s1g(b), b ∈ B, s1 ∈ R\Nil(R). We have ss1s2g

′(b′) =
ss1s2γg(b) = ss1s2g

′β(b) for some s2 ∈ R\Nil(R). Hence

b′ − β(b) ∈ NKer(g′) = NIm(f ′).
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In this sense, there are some a′ ∈ A′ and s3 ∈ R\Nil(R) such that

s3b
′ − s3β(b) = s3f

′(a′).

Because a′ ∈ A′ = NIm(α), we have that s4a
′ = s4α(a) for some a ∈ A,

s4 ∈ R\Nil(R). Hence

s3s4b
′ = s3s4β(b) + s3s4βf(a).

This is to say that b′ ∈ NIm(β). Therefore NCoker(β) = B′/NIm(β) = 0,
which implies that β is a nonnil-epimorphism.

(c) follows from (a) and (b). □

Theorem 2.6 (3 × 3 Lemma in PN-rings). Consider the following nonnil-
commutative diagram:

0

��

0

��

0

��
0 // A1

f1 //

α1
��

B1
g1 //

β1��

C1

γ1
��

// 0

0 // A
f //

α
��

B
g //

β
��

C

γ
��

// 0

0 // A2

��

f2 // B2

��

g2 // C2

��

// 0

0 0 0

in which all columns (resp., rows) are nonnil-exact.

(a) If the first and the second rows (resp., columns) are nonnil-exact, then
the third row (resp., column) is nonnil-exact.

(b) If the second and the third rows (resp., columns) are nonnil-exact, then
the first row (resp., column) is nonnil-exact.

Proof. (a) Suppose that the first and the second rows (resp., columns) are
nonnil-exact. For any a2 ∈ NKer(f2), there is some s1 ∈ R\Nil(R) such
that s1f2(a2) = 0. Since a2 ∈ A2 = NIm(α), there are some a ∈ A and
s2 ∈ R\Nil(R) such that s2a2 = s2α(a). Thus we have some s3 ∈ R\Nil(R)
such that s1s2s3βf(a) = s1s2s3f2α(a) = s1s2s3f2(a2) = 0 by the nonnil-
commutativity. Hence

f(a) ∈ NKer(β).

Since NKer(β) = NIm(β1), there are some b1 ∈ B1 and s4 ∈ R\Nil(R) such
that s4f(a) = s4β1(b1). Because the diagram is nonnil-commutative, we have
some s6 ∈ R\Nil(R) such that s6γ1g1(b1) = s6gβ1(b1). Hence s4s5s6γ1g1(b1) =
s4s5s6gβ1(b1) = s4s5s6gf(a) = 0 for some s5 ∈ R\Nil(R). Thus

g1(b1) ∈ NKer(γ1).
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Since NKer(γ1) = Ntor(C1), there is some s7 ∈ R\Nil(R) such that s7g1(b1) =
0. Hence

b1 ∈ NKer(g1).

Since NKer(g1) = NIm(f1), there are some a1 ∈ A1 and s8 ∈ R\Nil(R) such
that s8b1 = s8f1(a1). Hence s4s8s9f(a) = s4s8s9β1f1(a1) = s4s8s9fα1(a1) for
some s9 ∈ R\Nil(R). Thus we have

a− α1(a1) ∈ NKer(f).

Since NKer(f) = Ntor(A), s10(a−α1(a1)) = 0 for some s10 ∈ R\Nil(R). Thus
we have that s10a = s10α1(a1). Hence s11s2s10a2 = s11s2s10αα1(a1) = 0 for
some s11 ∈ R\Nil(R). Therefore a2 ∈ Ntor(A2), which implies that

NKer(f2) = Ntor(A2).

For any b2 ∈ NKer(g2), there is some s1 ∈ R\Nil(R) such that s1g2(b2) = 0.
Since b2 ∈ B2 = NIm(β), there are some b ∈ B and s2 ∈ R\Nil(R) such that
s2b2 = s2β(b). By the nonnil-commutativity, there is some s3 ∈ R\Nil(R)
such that s1s2s3γg(b) = s1s2s3g2β(b) = s1s2s3g2(b2) = 0. Hence

g(b) ∈ NKer(γ).

Since NKer(γ) = NIm(γ1), there are some c1 ∈ C1 and s4 ∈ R\Nil(R) such
that s4g(b) = s4γ1(c1). Since c1 ∈ C1 = NIm(g1), there are some b1 ∈ B1 and
s5 ∈ R\Nil(R) such that s5c1 = s5g1(b1). Thus s4s5s6g(b) = s4s5s6γ1g1(b1) =
s4s5s6gβ1(b1) for some s6 ∈ R\Nil(R). So

b− β1(b1) ∈ NKer(g).

Since NKer(g) = NIm(f), there are some a ∈ A and s7 ∈ R\Nil(R) such that
s7(b − β1(b1)) = s7f(a). Hence s7β(b − β1(b1)) = s7βf(a). So s7s8β(b) =
s7s8βf(a) = s7s8f2α(a) for some s8 ∈ R\Nil(R). Thus we have that s2s7b2 =
s2s7β(b) = s2s7f2α(a). Therefore b2 ∈ NIm(f2), which implies that

NKer(g2) ⊆ NIm(f2).

Conversely, for any a2 ∈ A2 = NIm(α), there are some a ∈ A and s ∈
R\Nil(R) such that sa2 = sα(a). Hence

s′sg2f2(a2) = s′sg2f2(α(a)) = s′sg2βf(a) = s′sγgf(a) = 0

for some s′ ∈ R\Nil(R). Thus f2(a2) ∈ NKer(g2), which implies that Im(f2) ⊆
NKer(g2). We have that NIm(f2) = Im(f2)+Ntor(B2) ⊆ NKer(g2). Therefore

NKer(g2) = NIm(f2).

For any c2 ∈ C2 = NIm(γ), there are some c ∈ C and s ∈ R\Nil(R) such
that sc2 = sγ(c). Since c ∈ C = NIm(g), we have that s1c = s1g(b) for some
b ∈ B, s1 ∈ R\Nil(R). Thus

ss1c2 = ss1γg(b) = ss1g2β(b),

that is, c2 ∈ NIm(g2). So
NIm(g2) = C2.
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Therefore, the third row is also nonnil-exact.
(b) Similar to (a), we can show (b) by diagram-chases. □

Using known nonnil-commutative diagrams, we can transfer related proper-
ties between modules. However, a given diagram is often not nonnil-commuta-
tive, and so we have to adapt the nonnil-commutative diagram to complete the
job. An R-module M is said to be NN-torsion-free if it is nonnil-isomorphic to
some nonnil-torsion-free module.

Theorem 2.7. Consider the following nonnil-commutative diagram of R-mod-
ules and homomorphisms with nonnil-exact rows:

A
f //

α
��

B
g //

β
��

C //

γ
��

0

A′ f ′
// B′ g′

// C ′

where the square on the left is nonnil-commutative and C ′ is NN-torsion-
free. Then there is γ : C → C ′ such that the square on the right is nonnil-
commutative.

Proof. Suppose that C ′ N≃ D, D is a nonnil-torsion-free module and the follow-
ing diagram

C ′ µ //

1C′

��

D

ν~~
1D

��
C ′

µ
// D

is nonnil-commutative. Let c ∈ C. Since g is a nonnil-epimorphism, there are
b ∈ B and s ∈ R\Nil(R) such that sg(b) = sc. Define

γ(c) = νµg′β(b).

If sg(b) = sc = 0, then there exist a ∈ A and s1 ∈ R\Nil(R) such that
s1f(a) = s1b. Thus

s2s1µg
′β(b) = s2s1µg

′βf(a) = s2s1µg
′f ′α(a) = 0

for some s2 ∈ R\Nil(R). Since D is a nonnil-torsion-free module, µg′β(b) = 0.
Hence γ(c) = νµg′β(b) = 0. Then γ is a well-defined homomorphism. It is
easy to see that the square on the right is nonnil-commutative. □

If the sequence A′ f ′

→ B′ g′

→ C ′ is only a nonnil-complex, then the result in
Theorem 2.7 also holds.
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Theorem 2.8. Consider the following nonnil-commutative diagram of R-mod-
ules and homomorphisms with nonnil-exact rows:

A
f //

α
��

B
g //

β
��

C

γ
��

0 // A′ f ′
// B′ g′

// C ′

where the square on the right is nonnil-commutative and A′ is NN-torsion-free.
Then there is α : A → A′ such that the square on the left is nonnil-commutative.

Proof. Suppose that A′ N≃ L, L is a nonnil-torsion-free module and the following
diagram

A′ µ //

1A′

��

L

ν��
1L

��
A′

µ
// L

is nonnil-commutative. Let a ∈ A. Then s1g
′βf(a) = s1γgf(a) = 0 for

some s1 ∈ R\Nil(R). Thus there are a′ ∈ A′ and s2 ∈ R\Nil(R) such that
s2f

′(a′) = s2βf(a). Define

α(a) = νµ(a′).

Since L is a nonnil-torsion-free module, we have α(a) = νµ(a′) = 0 if a = 0.
Therefore, α is a well-defined homomorphism. It is easy to see that the square
on the left is nonnil-commutative. □

If the sequence A
f→ B

g→ C is only a nonnil-complex, then the result in
Theorem 2.8 also holds.

Theorem 2.9. The following diagram with a nonnil-exact row:

0 // A
f //

h
��

B
g // C // 0

E

where C is NN-torsion-free, can be completed to the following nonnil-commuta-
tive diagram with nonnil-exact rows:

0 // A
f //

h
��

B
g //

β
��

C // 0

0 // E
α // M

γ // C // 0
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Proof. Suppose that C
N≃ D, D is a nonnil-torsion-free module and the follow-

ing diagram

C
µ //

1C

��

D

ν
~~

1D

��
C

µ
// D

is nonnil-commutative. Define N = { (b,−e) | sb = sf(a), se = sh(a), a ∈
A, s ∈ R\Nil(R)} and M = (B ⊕ E)/N . For b ∈ B and e ∈ E, define

α(e) = (0, e) +N, β(b) = (b, 0) +N.

Then αh = βf . Therefore, the square on the left is commutative and thus it is
nonnil-commutative.

Define γ : M → C by γ((b, e) + N) = νµg(b). If (b, e) ∈ N , then there
are a ∈ A and s1 ∈ R\Nil(R) such that s1f(a) = s1b and s1h(a) = −s1e. So
s1s2g(b) = s1s2gf(a) = 0 for some s2 ∈ R\Nil(R). Since D is a nonnil-torsion-
free module, we have µg(b) = 0. Thus

γ((b, e) +N) = νµg(b) = 0.

Therefore, γ is a well-defined map.
For any b ∈ B, we have g(b) ∈ C and there exists an element s3 ∈ R\Nil(R)

such that s3νµg(b) = s3g(b). So

s3γβ(b) = s3νµg(b) = s3g(b).

Therefore, the square on the right is nonnil-commutative.
Since g is a nonnil-epimorphism, γ is also a nonnil-epimorphism.
If α(e) = 0, then (0, e) ∈ N . So there exist a ∈ A and s4 ∈ R\Nil(R)

such that s4f(a) = 0 and s4h(a) = −s4e. Since f is a nonnil-monomorphism,
s5a = 0 for some s5 ∈ R\Nil(R). Thus −s5s4e = s5s4h(a) = 0 and hence
e ∈ Ntor(E). Therefore, α is a nonnil-monomorphism.

It is easy to see that γα = 0. Thus NIm(α) ⊆ NKer(γ).
If s6γ((b, e) + N) = s6νµg(b) = s6g(b) = 0 for some s6 ∈ R\Nil(R), then

there are a ∈ A and s7 ∈ R\Nil(R) such that s7f(a) = s7b. So

s7(b, e) +N = s7(f(a), e) +N

= s7[(f(a),−h(a)) + (0, e+ h(a))] +N

= s7(0, e+ h(a)) +N

= s7α(e+ h(a)).

Therefore, NKer(γ) = NIm(α), that is, the bottom row is nonnil-exact. □
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Theorem 2.10. The following diagram with a nonnil-exact row:

E

h
��

0 // A
f // B

g // C // 0

can be completed to the following nonnil-commutative diagram with nonnil-
exact rows:

0 // A
α // L

γ //

β
��

E //

h
��

0

0 // A
f // B

g // C // 0

Proof. Set

L = { (b, e) ∈ B ⊕ E | sg(b) = sh(e), s ∈ R\Nil(R)}

and define

β(b, e) = b, γ(b, e) = e, b ∈ B, e ∈ E.

Then trivially, for (b, e) ∈ B ⊕ E, there exists s ∈ R\Nil(R) such that
sgβ(b, e) = shγ(b, e). Define α : A → L by α(a) = (f(a), 0). Then βα = f .
Since f is a nonnil-monomorphism, α is a nonnil-monomorphism.

For e ∈ E, since g is a nonnil-epimorphism, we choose b ∈ B and s1 ∈
R\Nil(R) such that s1g(b) = s1h(e). Then (b, e) ∈ L and γ(b, e) = e. There-
fore, γ is an epimorphism.

For a ∈ A, we have γα(a) = γ(f(a), 0) = γ(0) = 0. And for (b, e) ∈ NKer(γ),
we have some s2 ∈ R\Nil(R) such that s2γ(b, e) = s2e = 0. There exists some
s3 ∈ R\Nil(R) such that s2s3g(b) = s2s3h(e) = 0. Thus

b ∈ NKer(g).

Since NKer(g) = NIm(f), there exist a ∈ A and s4 ∈ R\Nil(R) such that
s4b = s4f(a). So we have

s2s4(b, e) = s2s4(f(a), e) = s2s4(f(a), 0) = s2s4α(a).

Therefore, the top row is nonnil-exact. □

Theorem 2.11. Consider the following diagram Γ of modules and homomor-
phisms

A
α //

β
��

B

f
��

C
g // D

and the sequence ∆ of modules and homomorphisms

0 → A
σ→ B ⊕ C

ρ→ D → 0,

where σ(a) = (α(a),−β(a)) and ρ(b, c) = f(b) + g(c) for a ∈ A, b ∈ B, c ∈ C.
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(a) The homomorphism ρ is a nonnil-epimorphism if and only if

D = NIm(f) + NIm(g).

(b) The homomorphism σ is a nonnil-monomorphism if and only if

NKer(α) ∩NKer(β) = Ntor(A).

(c) The sequence ∆ is a nonnil-complex if and only if the diagram Γ is
nonnil-commutative.

(d) NKer(ρ) ⊆ NIm(σ) if and only if there exist a ∈ A and s ∈ R\Nil(R)
such that sb = sα(a) and sc = sβ(a) if s′f(b) = s′g(c) for some s′ ∈
R\Nil(R).

Proof. (a) If ρ is a nonnil-epimorphism, then there exist b ∈ B, c ∈ C and
s1 ∈ R\Nil(R) such that s1d = s1ρ(b, c) = s1f(b) + s1g(c) for any element
d ∈ D. Thus

d = f(b) + g(c) + t ∈ NIm(f) + NIm(g),

where t ∈ Ntor(D). Therefore D = NIm(f) + NIm(g).
Conversely, suppose D = NIm(f) + NIm(g). For any d ∈ D, there exist

d1 ∈ NIm(f) and d2 ∈ NIm(g) such that d = d1 + d2. Hence there exist b ∈ B,
c ∈ C and s2, s3 ∈ R\Nil(R) such that s2d1 = s2f(b) and s3d2 = s3g(c). Thus
we have

s2s3d = s2s3(f(b) + g(c)) = s2s3ρ(b, c).

So d ∈ NIm(ρ). Therefore, the homomorphism ρ is a nonnil-epimorphism.
(b) It is clear that Ntor(A) ⊆ NKer(α)∩NKer(β). If a ∈ NKer(α)∩NKer(β),

then there exist s4, s5 ∈ R\Nil(R) such that s4α(a) = 0, s5β(a) = 0. So

s4s5σ(a) = s4s5(α(a),−β(a)) = 0.

Since σ is a nonnil-monomorphism, we have a ∈ Ntor(A). Therefore, NKer(α)∩
NKer(β) = Ntor(A).

Conversely, if s6σ(a) = s6(α(a),−β(a)) = 0 for some s6 ∈ R\Nil(R), then
a ∈ NKer(α) ∩NKer(β) = Ntor(A). Therefore, σ is a nonnil-monomorphism.

(c) The sequence ∆ is a nonnil-complex if and only if NIm(σ) ⊆ NKer(ρ), if
and only if there exists s7 ∈ R\Nil(R) such that

s7ρσ(a) = s7(fα(a)− gβ(a)) = 0,

if and only if the diagram Γ is nonnil-commutative.
(d) Suppose that NKer(ρ) ⊆ NIm(σ). If s′f(b) = s′g(c) for some s′ ∈

R\Nil(R), then s′ρ(b, c) = 0. Hence (b, c) ∈ NKer(ρ) ⊆ NIm(σ). Thus there
exist an element a ∈ A and s ∈ R\Nil(R) such that s(b, c) = s(α(a), β(a)).

Conversely, if (b, c) ∈ NKer(ρ), that is, s′f(b) = s′g(−c) for some s′ ∈
R\Nil(R), then there exist a ∈ A and s ∈ R\Nil(R) such that sb = sα(a) and
−sc = sβ(a). Thus s(b, c) = sσ(a). Therefore (b, c) ∈ NIm(σ), which implies
that NKer(ρ) ⊆ NIm(σ). □
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