J. Korean Math. Soc. **60** (2023), No. 6, pp. 1215–1231 https://doi.org/10.4134/JKMS.j220503 pISSN: 0304-9914 / eISSN: 2234-3008

ON NONNIL-EXACT SEQUENCES AND NONNIL-COMMUTATIVE DIAGRAMS

Wei Zhao and Dechuan Zhou

ABSTRACT. In this paper, we investigate the nonnil-exact sequences and nonnil-commutative diagrams and show that they behave in a way similar to the classical ones in Abelian categories.

1. Introduction

Throughout this paper, it is assumed that all rings are commutative and associative with non-zero identity and all modules are unitary. If R is a ring, then Nil(R) denotes the set of nilpotent elements of R, and Z(R) denotes the set of zero-divisors of R. A ring with Nil(R) being divided prime is called a ϕ -ring. In this paper, if the nilradical Nil(R) of a ring R is prime, then R is called a PN-ring. If Z(R) = Nil(R), then R is called a ZN-ring. We recommend [1–20] for the study of the ring-theoretic characterizations on ϕ rings, and [21–28] for the study of the module-theoretic characterizations on ϕ -rings.

In order to extend the homological methods to commutative rings with the nilradical as a prime ideal, the authors in [26] introduced nonnil-exact sequences and nonnil-commutative diagrams. Since commutative diagrams play an important role in homological theory, we investigate nonnil-commutative diagrams in order to lay the foundation for future work on homological theories over PN-rings. We show that nonnil-commutative diagrams behave in a way similar to the classical ones. For example, Five Lemma, Snake Lemma and 3×3 Lemma show the same pattern in PN-rings. To this end, we introduce some necessary concepts and symbols.

Let R be a PN-ring and M an R-module. We set

 $NN(R) = \{I \mid I \text{ is a nonnil ideal of } R\},\$

O2023Korean Mathematical Society

Received October 10, 2022; Revised May 1, 2023; Accepted August 1, 2023.

²⁰²⁰ Mathematics Subject Classification. Primary 13C05, 13C10, 13C12.

Key words and phrases. Nonnil-commutative diagram, nonnil-exact sequence.

This work was financially supported by the National Natural Science Foundation of China 12061001, 12101515, Sichuan Science and Technology Program 2023NSFSC0074, and Aba Teachers University AS-HBZ2023-34, AS-HBZ2023-35, 20210103002, 20212001128.

and

$$Ntor(M) = \{x \in M \mid Ix = 0 \text{ for some } I \in NN(R)\}$$

If Ntor(M) = M, M is called a *nonnil-torsion* R-module, and if Ntor(M) = 0, M is called a *nonnil-torsion-free* R-module. Let $f : A \to B$ be a homomorphism of R-modules. Set

$$NKer(f) = \{a \in A \mid sf(a) = 0 \text{ for some } s \in R \setminus Nil(R)\},\$$

$$NIm(f) = \{b \in B \mid sb = sf(a) \text{ for some } a \in A \text{ and } s \in R \setminus Nil(R)\}$$

Since Nil(R) is a prime ideal, NKer(f) is a submodule of A and NIm(f) is a submodule of B. We set NCoker(f) = B/NIm(f).

Recall from [26] that the submodule NKer(f) of A is called the *nonnil-kernel* of f and the submodule NIm(f) of B is called the *nonnil-image* of f. The homomorphism $f: A \to B$ is called a *nonnil-monomorphism* if NKer(f) = Ntor(A) and it is called a *nonnil-epimorphism* if NIm(f) = B. A sequence of R-modules and homomorphisms $A \xrightarrow{f} B \xrightarrow{g} C$ is called a *nonnil-complex* (resp., a *nonnil-exact sequence*) if NIm $(f) \subseteq$ NKer(g) (resp., NIm(f) = NKer(g)). Every R-module M has a *free nonnil-resolution*, that is, there exists a nonnil-exact sequence

$$\cdots \longrightarrow F_n \xrightarrow{d_n} F_{n-1} \longrightarrow \cdots \longrightarrow F_1 \xrightarrow{d_1} F_0 \xrightarrow{d_0} M \to 0,$$

where each F_i is free.

Let $f: A \to B, g: B \to D, h: A \to C$ and $k: C \to D$ be homomorphisms of *R*-modules. Then the following diagram

$$\begin{array}{c} A \xrightarrow{f} B \\ h \downarrow & \downarrow^{g} \\ C \xrightarrow{h} D \end{array}$$

is said to be *nonnil-commutative* if NIm(gf - kh) = Ntor(D), that is, there exists $s_a \in R \setminus Nil(R)$ such that $s_agf(a) = s_akh(a)$ for any $a \in A$, where the choice of s_a depends on a.

An *R*-module homomorphism $f : A \to B$ is called a *nonnil-isomorphism* if there exists a homomorphism $g : B \to A$ such that $\operatorname{NIm}(\mathbf{1}_A - gf) = \operatorname{Ntor}(A)$ and $\operatorname{NIm}(\mathbf{1}_B - fg) = \operatorname{Ntor}(B)$, that is, the following diagram

$$\begin{array}{c} A \xrightarrow{f} B \\ \mathbf{1}_{A} \bigvee \swarrow g & \bigvee \mathbf{1}_{B} \\ A \xrightarrow{f} B \end{array}$$

is nonnil-commutative. If there exists a nonnil-isomorphism $f: A \to B$, we say that A, B are nonnil-isomorphic, denoted by $A \stackrel{N}{\simeq} B$. An *R*-module homomorphism $f: A \to B$ is called a *weakly nonnil-isomorphism* if NKer(f) = Ntor(A)

and $\operatorname{NIm}(f) = B$, in this case, we say that A is weakly nonnil-isomorphic to B by f, denoted by $f: A \xrightarrow{WN} B$.

In this paper, R always denotes a PN-ring.

2. Main results

Theorem 2.1 (Five Lemma in PN-rings). Consider the following nonnilcommutative diagram with nonnil-exact rows:

$$\begin{array}{c} D \xrightarrow{h} A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{k} E \\ \delta \middle| & & \downarrow^{\alpha} & \downarrow^{\beta} & \downarrow^{\gamma} & \downarrow^{\mu} \\ D' \xrightarrow{h'} A' \xrightarrow{f'} B' \xrightarrow{g'} C' \xrightarrow{k'} E' \end{array}$$

- (a) If α and γ are nonnil-monomorphisms and δ is a nonnil-epimorphism, then β is a nonnil-monomorphism.
- (b) If α and γ are nonnil-epimorphisms and µ is a nonnil-monomorphism, then β is a nonnil-epimorphism.
- (c) If δ is a nonnil-epimorphism, μ is a nonnil-monomorphism and α , γ are weakly nonnil-isomorphisms, then β is a weakly nonnil-isomorphism.
- (d) If $\delta, \alpha, \gamma, \mu$ are weakly nonnil-isomorphisms, then β is a weakly nonnil-isomorphism.

Proof. (a) Let $b \in NKer(\beta)$. Then there is some $s \in R \setminus Nil(R)$ such that $s\beta(b) = 0$. Since the diagram is nonnil-commutative, we have that $s_1s\gamma g(b) = s_1sg'\beta(b) = 0$ for some $s_1 \in R \setminus Nil(R)$. Thus

$$g(b) \in \operatorname{NKer}(\gamma)$$

Since NKer(γ) = Ntor(C), there is some $s_2 \in R \setminus Nil(R)$ such that $s_2g(b) = 0$. Thus

$$b \in \operatorname{NKer}(g).$$

Since NKer(g) = NIm(f), there are some $a \in A$ and $s_3 \in R \setminus Nil(R)$ such that $s_3b = s_3f(a)$. Hence $ss_3s_4f'\alpha(a) = ss_3s_4\beta f(a) = ss_3s_4\beta(b) = 0$ for some $s_4 \in R \setminus Nil(R)$. Thus

$$\alpha(a) \in \operatorname{NKer}(f').$$

Since NKer(f') = NIm(h'), there are some $d' \in D'$ and $s_5 \in R \setminus Nil(R)$ such that $s_5\alpha(a) = s_5h'(d')$. Since δ is a nonnil-epimorphism, there are some $d \in D$ and $s_6 \in R \setminus Nil(R)$ such that $s_6d' = s_6\delta(d)$. So we have that $s_5s_6s_7\alpha(a) = s_5s_6s_7h'(d') = s_5s_6s_7h'\delta(d) = s_5s_6s_7\alpha h(d)$ for some $s_7 \in R \setminus Nil(R)$. Hence

$$a - h(d) \in \operatorname{NKer}(\alpha).$$

Thus there exists some $s_8 \in R \setminus Nil(R)$ such that $s_8a = s_8h(d)$. Since $s_9s_8s_3b = s_9s_8s_3f(a) = s_9s_8s_3fh(d) = 0$ for some $s_9 \in R \setminus Nil(R)$,

$$b \in \operatorname{Ntor}(B).$$

Therefore,

1218

$$\operatorname{NKer}(\beta) = \operatorname{Ntor}(B),$$

which implies that β is a nonnil-monomorphism.

(b) Let $b' \in B'$. Since γ is a nonnil-epimorphism, there are some $c \in C$ and $s \in R \setminus Nil(R)$ such that

$$s\gamma(c) = sg'(b').$$

5

Nonnil-commutativity of the right square gives $s_1s_2s\mu k(c) = s_1s_2sk'\gamma(c) = s_1s_2sk'g'(b') = 0$ for some $s_1, s_2 \in R \setminus Nil(R)$. Since μ is a nonnil-monomorphism, $s_3k(c) = 0$ for some $s_3 \in R \setminus Nil(R)$. Because of the nonnil-exactness of the top row, there are some $b \in B$ and $s_4 \in R \setminus Nil(R)$ such that

$$s_4g(b) = s_4c.$$

Hence $ss_4s_5g'(b') = ss_4s_5\gamma(c) = ss_4s_5\gamma g(b) = ss_4s_5g'\beta(b)$ for some $s_5 \in R \setminus Nil(R)$. Hence

$$b' - \beta(b) \in \operatorname{NKer}(g').$$

Since NKer(g') = NIm(f'), $s_6(b' - \beta(b)) = s_6f'(a')$ for some $a' \in A'$, $s_6 \in R \setminus Nil(R)$ by the nonnil-exactness of the bottom row. Since α is a nonnilepimorphism, there are some $a \in A$ and $s_7 \in R \setminus Nil(R)$ with $s_7\alpha(a) = s_7a'$. Hence $s_6s_7s_8(b' - \beta(b)) = s_6s_7s_8f'(a') = s_6s_7s_8f'\alpha(a) = s_6s_7s_8\beta f(a)$ for some $s_8 \in R \setminus Nil(R)$. Thus $s_6s_7s_8b' = s_6s_7s_8\beta(b + f(a))$. Therefore

$$b' \in \operatorname{NIm}(\beta),$$

which implies that β is a nonnil-epimorphism.

It is easy to see that (c) follows from (a) and (b), while (d) follows from (c). $\hfill \Box$

Theorem 2.2 (Snake Lemma in PN-rings). Consider the following nonnilcommutative diagram with nonnil-exact rows:

$$A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0$$
$$\downarrow^{\alpha} \qquad \downarrow^{\beta} \qquad \downarrow^{\gamma}$$
$$\longrightarrow A' \xrightarrow{f'} B' \xrightarrow{g'} C'$$

(a) There is a nonnil-exact sequence

0

 $\operatorname{NKer}(\alpha) \to \operatorname{NKer}(\beta) \to \operatorname{NKer}(\gamma) \to \operatorname{NCoker}(\alpha) \to \operatorname{NCoker}(\beta) \to \operatorname{NCoker}(\gamma).$

(b) If f is a nonnil-monomorphism, then

$$0 \rightarrow \operatorname{NKer}(\alpha) \rightarrow \operatorname{NKer}(\beta) \rightarrow \operatorname{NKer}(\gamma) \rightarrow \operatorname{NCoker}(\alpha) \rightarrow \operatorname{NCoker}(\beta) \rightarrow \operatorname{NCoker}(\gamma)$$

is nonnil-exact.

(c) If g' is a nonnil-epimorphism, then

$$\begin{split} \mathrm{NKer}(\alpha) &\rightarrow \mathrm{NKer}(\beta) \rightarrow \mathrm{NKer}(\gamma) \rightarrow \mathrm{NCoker}(\alpha) \rightarrow \mathrm{NCoker}(\beta) \rightarrow \mathrm{NCoker}(\gamma) \rightarrow 0 \\ & is \ nonnil-exact. \end{split}$$

Proof. (a) The proof is completed by the following three steps.

(1) Let $a \in \operatorname{NKer}(\alpha)$. Then there exists $s \in R \setminus Nil(R)$ such that $s\alpha(a) = 0$. Because of nonnil-commutativity, there exists some $s_1 \in R \setminus Nil(R)$ such that $ss_1\beta f(a) = ss_1f'\alpha(a) = 0$. Hence $f(a) \in \operatorname{NKer}(\beta)$. Define $f_1 : \operatorname{NKer}(\alpha) \to \operatorname{NKer}(\beta)$ by

$$f_1(a) = f(a).$$

Then f_1 is well-defined. Similarly, we get a homomorphism $g_1 : \operatorname{NKer}(\beta) \to \operatorname{NKer}(\gamma)$ by $g_1(b) = g(b)$ for $b \in B$.

For $a' \in A'$, define

$$f_2(a' + \operatorname{NIm}(\alpha)) = f'(a') + \operatorname{NIm}(\beta).$$

It is easy to check that $f_2 : A'/\operatorname{NIm}(\alpha) \to B'/\operatorname{NIm}(\beta)$ is well-defined. In fact, if $a' \in \operatorname{NIm}(\alpha)$, then $sa' = s\alpha(a)$ for some $a \in A$ and $s \in R \setminus Nil(R)$. So there exists $s_1 \in R \setminus Nil(R)$ such that $ss_1f'(a') = ss_1f'\alpha(a) = ss_1\beta f(a)$. Thus $f'(a') \in \operatorname{NIm}(\beta)$. Similarly, we get a homomorphism $g_2 : B'/\operatorname{NIm}(\beta) \to C'/\operatorname{NIm}(\gamma)$ by $g_2(b' + \operatorname{NIm}(\beta)) = g'(b') + \operatorname{NIm}(\gamma)$ for $b' \in B'$.

Let $c \in \operatorname{NKer}(\gamma)$. Since g is a nonnil-epimorphism, there exist $b \in B$ and $s, s_1 \in R \setminus Nil(R)$ such that $s_1\gamma(c) = 0$ and sg(b) = sc. Thus $ss_1s_2g'\beta(b) = ss_1s_2\gamma g(b) = ss_1s_2\gamma(c) = 0$ for some $s_2 \in R \setminus Nil(R)$. Hence $\beta(b) \in \operatorname{NKer}(g') = \operatorname{NIm}(f')$. In this sense, there exist some $a' \in A'$ and $s_3 \in R \setminus Nil(R)$ such that $s_3f'(a') = s_3\beta(b)$. Define

$$\delta(c) = a' + \operatorname{NIm}(\alpha).$$

If sg(b) = 0, then there are some $a \in A$ and $s_4 \in R \setminus Nil(R)$ such that $s_4f(a) = s_4b$ by the fact that $\operatorname{NIm}(f) = \operatorname{NKer}(g)$. Since $s_4s_5\beta(b) = s_4s_5\beta f(a) = s_4s_5f'\alpha(a)$ for some $s_5 \in R \setminus Nil(R)$, we have $s_6a' = s_6\alpha(a)$ for some $s_6 \in R \setminus Nil(R)$ and $a' \in \operatorname{NIm}(\alpha)$. Therefore, δ is well-defined.

(2) Next, we show that the following sequence is a nonnil-complex of R-modules and homomorphisms:

$$\operatorname{NKer}(\alpha) \xrightarrow{f_1} \operatorname{NKer}(\beta) \xrightarrow{g_1} \operatorname{NKer}(\gamma) \xrightarrow{\delta} \operatorname{NCoker}(\alpha) \xrightarrow{f_2} \operatorname{NCoker}(\beta) \xrightarrow{g_2} \operatorname{NCoker}(\gamma).$$

For any $a \in \operatorname{NKer}(\alpha)$, we have that $s_1g_1f_1(a) = s_1gf(a) = 0$ for some $s_1 \in R \setminus Nil(R)$. Similarly, $s_2g_2f_2(a' + \operatorname{NIm}(\alpha)) = s_2g'f'(a') + \operatorname{NIm}(\gamma) = 0$ for some $s_2 \in R \setminus Nil(R)$.

Let $b \in \operatorname{NKer}(\beta)$. Then there exists some $s \in R \setminus Nil(R)$ such that $s\beta(b) = 0$. Hence $\beta(b) \in \operatorname{NKer}(g') = \operatorname{NIm}(f')$. Thus there are some $a' \in A'$ and $s_3 \in R \setminus Nil(R)$ such that $s_3f'(a') = s_3\beta(b) = 0$. We have that $a' \in \operatorname{NKer}(f') = \operatorname{Ntor}(A')$. So

$$\delta g_1(b) = a' + \operatorname{NIm}(\alpha) = 0.$$

Let $c \in \operatorname{NKer}(\gamma)$. Then there exists some $s \in R \setminus Nil(R)$ such that $s\gamma(c) = 0$ and sc = sg(b). Because there exist some $s_1, s_2 \in R \setminus Nil(R)$ such that $s_1s_2g'\beta(b) = s_1s_2\gamma g(b) = s_1s_2\gamma(c) = 0$, $\beta(b) \in \operatorname{NKer}(g') = \operatorname{NIm}(f')$. Hence we

have that $s_3\beta(b) = s_3f'(a')$, where $s_3 \in R \setminus Nil(R)$. Thus

 α

$$f_2\delta(c) = f_2(a' + \operatorname{NIm}(\alpha)) = f'(a') + \operatorname{NIm}(\beta) = 0$$

(3) Notice we have that

$$NKer(g_1) = \{ b \in NKer(\beta) \mid sg_1(b) = sg(b) = 0, s \in R \setminus Nil(R) \}$$
$$= NKer(\beta) \cap NKer(g)$$

and

$$\operatorname{NIm}(f_1) = \{ b \in \operatorname{NKer}(\beta) \mid sb = sf_1(a) = sf(a), a \in \operatorname{NKer}(\alpha), s \in R \setminus Nil(R) \}.$$

In verifying that $\operatorname{NKer}(g_1) = \operatorname{NIm}(f_1)$, we show only that $\operatorname{NKer}(g_1) \subseteq \operatorname{NIm}(f_1)$.

Let $b \in \operatorname{NKer}(g_1)$. Then $b \in \operatorname{NKer}(\beta)$ and $b \in \operatorname{NKer}(g) = \operatorname{NIm}(f)$. Thus there exist some $s \in R \setminus Nil(R)$ and $a \in \operatorname{NKer}(\alpha)$ such that sb = sf(a). Hence $ss_1f'\alpha(a) = ss_1\beta f(a) = ss_1\beta(b)$ for some $s_1 \in R \setminus Nil(R)$. So $ss_1s_2f'\alpha(a) =$ $ss_1s_2\beta(b) = 0$ for some $s_2 \in R \setminus Nil(R)$. Thus

$$(a) \in \operatorname{NKer}(f') = \operatorname{Ntor}(A').$$

Since there exists some $s_3 \in R \setminus Nil(R)$ such that $s_3\alpha(a) = 0$. In this sense, $b \in NIm(f_1)$. Therefore $NIm(f_1) = NKer(g_1)$.

Notice that

 $\operatorname{NIm}(g_1) = \{ c \in \operatorname{NKer}(\gamma) \mid sc = sg_1(b) = sg(b), b \in \operatorname{NKer}(\beta), s \in R \setminus Nil(R) \}$ and

and

$$\operatorname{NKer}(\delta) = \{ c \in \operatorname{NKer}(\gamma) \mid sc = sg(b), s_1\beta(b) = s_1f'(a'), \\ a' \in \operatorname{NIm}(\alpha), s_1 \in R \setminus Nil(R) \}.$$

Let $c \in \operatorname{NKer}(\delta)$. Then $c \in \operatorname{NKer}(\gamma)$ and there exist some $a' \in \operatorname{NIm}(\alpha)$ and $s_1 \in R \setminus Nil(R)$ such that $sc = sg(b_1), s_1\beta(b_1) = s_1f'(a')$. So there exists some $s_2 \in R \setminus Nil(R)$ such that $s_2a' = s_2\alpha(a)$. Thus we have that $s_1s_2\beta(b_1) = s_1s_2f'(a') = s_1s_2f'\alpha(a) = s_1s_2\beta f(a)$. Hence $b_1 - f(a) \in \operatorname{NKer}(\beta)$. Set

$$b = b_1 - f(a).$$

We have that $b \in NKer(\beta)$ and $sc = sg_1(b) = sg(b)$. Thus $c \in NIm(g_1)$, which implies that $NIm(g_1) = NKer(\delta)$.

Notice that

$$\begin{aligned} \operatorname{NKer}(f_2) &= \{a' + \operatorname{NIm}(\alpha) \mid sf_2(a' + \operatorname{NIm}(\alpha)) = 0, a' \in A', s \in R \setminus Nil(R) \} \\ &= \{a' + \operatorname{NIm}(\alpha) \mid sf'(a') \in \operatorname{NIm}(\beta), a' \in A', s \in R \setminus Nil(R) \} \\ &= \{a' + \operatorname{NIm}(\alpha) \mid s_1 sf'(a') = s_1\beta(b), a' \in A', b \in B, s, s_1 \in R \setminus Nil(R) \}. \end{aligned}$$

If $s_1sf'(a') = s_1\beta(b)$, then $s's_1sg'\beta(b) = s's_1sg'f'(a') = 0$ for some $s' \in R \setminus Nil(R)$. So we have that $\beta(b) \in NKer(g') = NIm(f')$. Thus $s\beta(b) = sf'(a'_1)$ for some $s \in R \setminus Nil(R)$ and $a'_1 \in A'$. Therefore, we have

$$\operatorname{NKer}(f_2) = \{a' + \operatorname{NIm}(\alpha) \mid s\beta(b) = sf'(a'), b \in B, a' \in A', s \in R \setminus Nil(R)\}.$$

Set c = g(b). We have $s\gamma(c) = s\gamma g(b) = sg'f'(a') = 0$. Hence $c \in NKer(\gamma)$. Therefore $NKer(f_2) = NIm(\delta)$.

Similarly,

$$\operatorname{NKer}(g_2) = \{ b' + \operatorname{NIm}(\beta) \mid s\gamma(c) = sg'(b'), c \in C, b' \in B', s \in R \setminus Nil(R) \}$$

Notice that

$$\operatorname{NIm}(f_2) = \{b' + \operatorname{NIm}(\beta) \mid sb' = sf'(a') + s_1\beta(b), \\ a' \in A', b \in B, b' \in B', s, s_1 \in R \setminus Nil(R)\}.$$

If $\overline{b'} \in \operatorname{NKer}(g_2)$, then there exist $c \in C$, $b' \in B'$ and $s \in R \setminus Nil(R)$ such that $s\gamma(c) = sg'(b')$. Because $c \in C = \operatorname{NIm}(g)$, we have that $s_1c = s_1g(b)$ for some $b \in B$, $s_1 \in R \setminus Nil(R)$. Thus

$$s_1 sg'(b') = s_1 s\gamma(c) = s_1 s\gamma g(b) = s_1 sg'\beta(b).$$

 So

$$b' - \beta(b) \in \operatorname{NKer}(g') = \operatorname{NIm}(f').$$

Hence $sb' - s\beta(b) = sf'(a')$ for some $a' \in A'$, $s \in R \setminus Nil(R)$. We have $\overline{b'} \in NIm(f_2)$, which implies that $NIm(f_2) = NKer(g_2)$.

(b) Consider that $\operatorname{NKer}(f_1) = \operatorname{NKer}(\alpha) \cap \operatorname{NKer}(f) = \operatorname{Ntor}(A)$.

(c) Consider that $\operatorname{NIm}(g_2) \supseteq (\operatorname{NIm}(g') + \operatorname{NIm}(\gamma)) / \operatorname{NIm}(\gamma) = C' / \operatorname{NIm}(\gamma)$.

Corollary 2.3. Consider the following nonnil-commutative diagram with nonnil-exact rows:

$$0 \longrightarrow A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0$$
$$\downarrow^{\alpha} \qquad \downarrow^{\beta} \qquad \downarrow^{\gamma} \\ 0 \longrightarrow A' \xrightarrow{f'} B' \xrightarrow{g'} C' \longrightarrow 0$$

(a) If α is a nonnil-epimorphism, then the sequence

$$0 \to \operatorname{NKer}(\alpha) \to \operatorname{NKer}(\beta) \to \operatorname{NKer}(\gamma) \to 0$$

is nonnil-exact.

(b) If γ is a nonnil-monomorphism, then the sequence

$$0 \to \operatorname{NCoker}(\alpha) \to \operatorname{NCoker}(\beta) \to \operatorname{NCoker}(\gamma) \to 0$$

is nonnil-exact.

Proof. (a) It holds by Theorem 2.2.

(b) Suppose that γ is a nonnil-monomorphism. For $a' + \operatorname{NIm}(\alpha) \in \operatorname{NKer}(f_2)$, $a' \in A'$, there exists $s_1 \in R \setminus Nil(R)$ such that $s_1 f'(a') = s_1\beta(b)$, where $b \in B$. Since the diagram is nonnil-commutative, we have some $s_2 \in R \setminus Nil(R)$ such that $s_2\gamma g(b) = s_2g'\beta(b) = s_2g'f'(a') = 0$. Thus

$$g(b) \in \operatorname{NKer}(\gamma) = \operatorname{Ntor}(C).$$

Hence $s_3g(b) = 0$ for some $s_3 \in R \setminus Nil(R)$. So $b \in NKer(g) = NIm(f)$, we have some $s_4 \in R \setminus Nil(R)$, $a \in A$ such that $s_4b = s_4f(a)$. It is clear that $s_1s_4f'(a') = s_1s_4\beta(b) = s_1s_4\beta(a) = s_1s_4f'\alpha(a)$. So we have that

$$a' - \alpha(a) \in \operatorname{NKer}(f') = \operatorname{Ntor}(A').$$

Hence there exists some $s_5 \in R \setminus Nil(R)$ such that $s_5a' = s_5\alpha(a)$ and $a' \in NIm(\alpha)$. Therefore $a' + NIm(\alpha) = 0$, which implies that $0 \to NCoker(\alpha) \to NCoker(\beta) \to NCoker(\gamma) \to 0$ is nonnil-exact.

Lemma 2.4. Let $A \xrightarrow{f} B \xrightarrow{g} C$ be a nonnil-exact sequence of R-modules. If A, C are nonnil-torsion, then B is also nonnil-torsion.

Proof. For any $b \in B$, since $g(b) \in C$ is nonnil-torsion, sg(b) = 0 for some $s \in R \setminus Nil(R)$. Hence $b \in NKer(g) = NIm(f)$. So there are some $a \in A$ and $s_1 \in R \setminus Nil(R)$ such that

$$s_1b = s_1f(a).$$

Since $a \in A$ is nonnil-torsion, there is some $s_2 \in R \setminus Nil(R)$ such that $s_2a = 0$. Thus

$$s_1 s_2 b = s_1 s_2 f(a) = 0.$$

Therefore b is nonnil-torsion, which implies that B is a nonnil-torsion R-module.

Corollary 2.5. Consider the following nonnil-commutative diagram with nonnil-exact rows:

$$A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0$$
$$\downarrow^{\alpha} \qquad \downarrow^{\beta} \qquad \downarrow^{\gamma}$$
$$0 \longrightarrow A' \xrightarrow{f'} B' \xrightarrow{g'} C'$$

- (a) If α and γ are nonnil-monomorphisms, then β is a nonnil-monomorphism.
- (b) If α and γ are nonnil-epimorphisms, then β is a nonnil-epimorphism.
- (c) If α and γ are weakly nonnil-isomorphisms, then β is a weakly nonnil-isomorphism.

Proof. (a) If α and γ are nonnil-monomorphisms, then NKer(α) and NKer(γ) are nonnil-torsion. So NKer(β) is also nonnil-torsion by Theorem 2.2 and Lemma 2.4. Thus β is a nonnil-monomorphism.

(b) If α and γ are nonnil-epimorphisms, then NCoker $(\alpha) = NCoker(\gamma) = 0$. Hence $A' = NIm(\alpha)$ and $C' = NIm(\gamma)$. For any $b' \in B'$, we have that

$$g_2(\overline{b'}) = \overline{g'(b')} = \overline{0}.$$

Thus $g'(b') \in \operatorname{NIm}(\gamma)$. Hence $sg'(b') = s\gamma(c)$ for some $c \in C$, $s \in R \setminus Nil(R)$. Suppose that $s_1c = s_1g(b)$, $b \in B$, $s_1 \in R \setminus Nil(R)$. We have $ss_1s_2g'(b') = ss_1s_2\gamma g(b) = ss_1s_2g'\beta(b)$ for some $s_2 \in R \setminus Nil(R)$. Hence

$$b' - \beta(b) \in \operatorname{NKer}(g') = \operatorname{NIm}(f').$$

In this sense, there are some $a' \in A'$ and $s_3 \in R \setminus Nil(R)$ such that

$$s_3b' - s_3\beta(b) = s_3f'(a').$$

Because $a' \in A' = \text{NIm}(\alpha)$, we have that $s_4 a' = s_4 \alpha(a)$ for some $a \in A$, $s_4 \in R \setminus Nil(R)$. Hence

$$s_3 s_4 b' = s_3 s_4 \beta(b) + s_3 s_4 \beta f(a).$$

This is to say that $b' \in \text{NIm}(\beta)$. Therefore $\text{NCoker}(\beta) = B'/\text{NIm}(\beta) = 0$, which implies that β is a nonnil-epimorphism.

(c) follows from (a) and (b).

Theorem 2.6 $(3 \times 3$ Lemma in PN-rings). Consider the following nonnilcommutative diagram:

in which all columns (resp., rows) are nonnil-exact.

- (a) If the first and the second rows (resp., columns) are nonnil-exact, then the third row (resp., column) is nonnil-exact.
- (b) If the second and the third rows (resp., columns) are nonnil-exact, then the first row (resp., column) is nonnil-exact.

Proof. (a) Suppose that the first and the second rows (resp., columns) are nonnil-exact. For any $a_2 \in \operatorname{NKer}(f_2)$, there is some $s_1 \in R \setminus Nil(R)$ such that $s_1f_2(a_2) = 0$. Since $a_2 \in A_2 = \operatorname{NIm}(\alpha)$, there are some $a \in A$ and $s_2 \in R \setminus Nil(R)$ such that $s_2a_2 = s_2\alpha(a)$. Thus we have some $s_3 \in R \setminus Nil(R)$ such that $s_1s_2s_3\beta f(a) = s_1s_2s_3f_2\alpha(a) = s_1s_2s_3f_2(a_2) = 0$ by the nonnilcommutativity. Hence

$$f(a) \in \operatorname{NKer}(\beta).$$

Since NKer(β) = NIm(β_1), there are some $b_1 \in B_1$ and $s_4 \in R \setminus Nil(R)$ such that $s_4f(a) = s_4\beta_1(b_1)$. Because the diagram is nonnil-commutative, we have some $s_6 \in R \setminus Nil(R)$ such that $s_6\gamma_1g_1(b_1) = s_6g\beta_1(b_1)$. Hence $s_4s_5s_6\gamma_1g_1(b_1) = s_4s_5s_6g\beta_1(b_1) = s_4s_5s_6gf(a) = 0$ for some $s_5 \in R \setminus Nil(R)$. Thus

$$g_1(b_1) \in \operatorname{NKer}(\gamma_1).$$

Since NKer (γ_1) = Ntor (C_1) , there is some $s_7 \in R \setminus Nil(R)$ such that $s_7g_1(b_1) = 0$. Hence

$$b_1 \in \operatorname{NKer}(g_1).$$

Since NKer $(g_1) = \text{NIm}(f_1)$, there are some $a_1 \in A_1$ and $s_8 \in R \setminus Nil(R)$ such that $s_8b_1 = s_8f_1(a_1)$. Hence $s_4s_8s_9f(a) = s_4s_8s_9\beta_1f_1(a_1) = s_4s_8s_9f\alpha_1(a_1)$ for some $s_9 \in R \setminus Nil(R)$. Thus we have

$$a - \alpha_1(a_1) \in \operatorname{NKer}(f).$$

Since NKer(f) = Ntor(A), $s_{10}(a - \alpha_1(a_1)) = 0$ for some $s_{10} \in R \setminus Nil(R)$. Thus we have that $s_{10}a = s_{10}\alpha_1(a_1)$. Hence $s_{11}s_2s_{10}a_2 = s_{11}s_2s_{10}\alpha\alpha_1(a_1) = 0$ for some $s_{11} \in R \setminus Nil(R)$. Therefore $a_2 \in Ntor(A_2)$, which implies that

$$\operatorname{NKer}(f_2) = \operatorname{Ntor}(A_2)$$

For any $b_2 \in \operatorname{NKer}(g_2)$, there is some $s_1 \in R \setminus Nil(R)$ such that $s_1g_2(b_2) = 0$. Since $b_2 \in B_2 = \operatorname{NIm}(\beta)$, there are some $b \in B$ and $s_2 \in R \setminus Nil(R)$ such that $s_2b_2 = s_2\beta(b)$. By the nonnil-commutativity, there is some $s_3 \in R \setminus Nil(R)$ such that $s_1s_2s_3\gamma g(b) = s_1s_2s_3g_2\beta(b) = s_1s_2s_3g_2(b_2) = 0$. Hence

$$g(b) \in \operatorname{NKer}(\gamma).$$

Since NKer (γ) = NIm (γ_1) , there are some $c_1 \in C_1$ and $s_4 \in R \setminus Nil(R)$ such that $s_4g(b) = s_4\gamma_1(c_1)$. Since $c_1 \in C_1 = \text{NIm}(g_1)$, there are some $b_1 \in B_1$ and $s_5 \in R \setminus Nil(R)$ such that $s_5c_1 = s_5g_1(b_1)$. Thus $s_4s_5s_6g(b) = s_4s_5s_6\gamma_1g_1(b_1) = s_4s_5s_6g\beta_1(b_1)$ for some $s_6 \in R \setminus Nil(R)$. So

$$b - \beta_1(b_1) \in \operatorname{NKer}(g).$$

Since NKer(g) = NIm(f), there are some $a \in A$ and $s_7 \in R \setminus Nil(R)$ such that $s_7(b - \beta_1(b_1)) = s_7f(a)$. Hence $s_7\beta(b - \beta_1(b_1)) = s_7\beta f(a)$. So $s_7s_8\beta(b) = s_7s_8\beta f(a) = s_7s_8f_2\alpha(a)$ for some $s_8 \in R \setminus Nil(R)$. Thus we have that $s_2s_7b_2 = s_2s_7\beta(b) = s_2s_7f_2\alpha(a)$. Therefore $b_2 \in \text{NIm}(f_2)$, which implies that

$$\operatorname{NKer}(g_2) \subseteq \operatorname{NIm}(f_2).$$

Conversely, for any $a_2 \in A_2 = \text{NIm}(\alpha)$, there are some $a \in A$ and $s \in R \setminus Nil(R)$ such that $sa_2 = s\alpha(a)$. Hence

$$s' sg_2 f_2(a_2) = s' sg_2 f_2(\alpha(a)) = s' sg_2 \beta f(a) = s' s\gamma gf(a) = 0$$

for some $s' \in R \setminus Nil(R)$. Thus $f_2(a_2) \in NKer(g_2)$, which implies that $Im(f_2) \subseteq NKer(g_2)$. We have that $NIm(f_2) = Im(f_2) + Ntor(B_2) \subseteq NKer(g_2)$. Therefore

$$\operatorname{NKer}(g_2) = \operatorname{NIm}(f_2).$$

For any $c_2 \in C_2 = \operatorname{NIm}(\gamma)$, there are some $c \in C$ and $s \in R \setminus Nil(R)$ such that $sc_2 = s\gamma(c)$. Since $c \in C = \operatorname{NIm}(g)$, we have that $s_1c = s_1g(b)$ for some $b \in B$, $s_1 \in R \setminus Nil(R)$. Thus

$$ss_1c_2 = ss_1\gamma g(b) = ss_1g_2\beta(b),$$

that is, $c_2 \in \text{NIm}(g_2)$. So

Ş

$$\operatorname{NIm}(g_2) = C_2.$$

Therefore, the third row is also nonnil-exact. (b) Similar to (a), we can show (b) by diagram-chases. \Box

Using known nonnil-commutative diagrams, we can transfer related properties between modules. However, a given diagram is often not nonnil-commutative, and so we have to adapt the nonnil-commutative diagram to complete the job. An R-module M is said to be NN-torsion-free if it is nonnil-isomorphic to some nonnil-torsion-free module.

Theorem 2.7. Consider the following nonnil-commutative diagram of *R*-modules and homomorphisms with nonnil-exact rows:

where the square on the left is nonnil-commutative and C' is NN-torsion-free. Then there is $\gamma : C \to C'$ such that the square on the right is nonnil-commutative.

Proof. Suppose that $C' \stackrel{N}{\simeq} D$, D is a nonnil-torsion-free module and the following diagram

is nonnil-commutative. Let $c \in C$. Since g is a nonnil-epimorphism, there are $b \in B$ and $s \in R \setminus Nil(R)$ such that sg(b) = sc. Define

$$\gamma(c) = \nu \mu g' \beta(b).$$

If sg(b) = sc = 0, then there exist $a \in A$ and $s_1 \in R \setminus Nil(R)$ such that $s_1f(a) = s_1b$. Thus

$$s_2 s_1 \mu g' \beta(b) = s_2 s_1 \mu g' \beta f(a) = s_2 s_1 \mu g' f' \alpha(a) = 0$$

for some $s_2 \in R \setminus Nil(R)$. Since *D* is a nonnil-torsion-free module, $\mu g'\beta(b) = 0$. Hence $\gamma(c) = \nu \mu g'\beta(b) = 0$. Then γ is a well-defined homomorphism. It is easy to see that the square on the right is nonnil-commutative.

If the sequence $A' \xrightarrow{f'} B' \xrightarrow{g'} C'$ is only a nonnil-complex, then the result in Theorem 2.7 also holds.

Theorem 2.8. Consider the following nonnil-commutative diagram of *R*-modules and homomorphisms with nonnil-exact rows:

where the square on the right is nonnil-commutative and A' is NN-torsion-free. Then there is $\alpha : A \to A'$ such that the square on the left is nonnil-commutative.

Proof. Suppose that $A' \stackrel{N}{\simeq} L$, L is a nonnil-torsion-free module and the following diagram

is nonnil-commutative. Let $a \in A$. Then $s_1g'\beta f(a) = s_1\gamma gf(a) = 0$ for some $s_1 \in R \setminus Nil(R)$. Thus there are $a' \in A'$ and $s_2 \in R \setminus Nil(R)$ such that $s_2f'(a') = s_2\beta f(a)$. Define

$$\alpha(a) = \nu \mu(a').$$

Since L is a nonnil-torsion-free module, we have $\alpha(a) = \nu \mu(a') = 0$ if a = 0. Therefore, α is a well-defined homomorphism. It is easy to see that the square on the left is nonnil-commutative.

If the sequence $A \xrightarrow{f} B \xrightarrow{g} C$ is only a nonnil-complex, then the result in Theorem 2.8 also holds.

Theorem 2.9. The following diagram with a nonnil-exact row:

where C is NN-torsion-free, can be completed to the following nonnil-commutative diagram with nonnil-exact rows:

Proof. Suppose that $C \stackrel{N}{\simeq} D$, D is a nonnil-torsion-free module and the following diagram

is nonnil-commutative. Define $N = \{ (b, -e) \mid sb = sf(a), se = sh(a), a \in A, s \in R \setminus Nil(R) \}$ and $M = (B \oplus E)/N$. For $b \in B$ and $e \in E$, define

$$\alpha(e) = (0, e) + N, \qquad \beta(b) = (b, 0) + N.$$

Then $\alpha h = \beta f$. Therefore, the square on the left is commutative and thus it is nonnil-commutative.

Define $\gamma : M \to C$ by $\gamma((b,e) + N) = \nu \mu g(b)$. If $(b,e) \in N$, then there are $a \in A$ and $s_1 \in R \setminus Nil(R)$ such that $s_1 f(a) = s_1 b$ and $s_1 h(a) = -s_1 e$. So $s_1 s_2 g(b) = s_1 s_2 gf(a) = 0$ for some $s_2 \in R \setminus Nil(R)$. Since D is a nonnil-torsion-free module, we have $\mu g(b) = 0$. Thus

$$\gamma((b,e)+N) = \nu \mu g(b) = 0.$$

Therefore, γ is a well-defined map.

For any $b \in B$, we have $g(b) \in C$ and there exists an element $s_3 \in R \setminus Nil(R)$ such that $s_3 \nu \mu g(b) = s_3 g(b)$. So

$$s_3\gamma\beta(b) = s_3\nu\mu g(b) = s_3g(b).$$

Therefore, the square on the right is nonnil-commutative.

Since g is a nonnil-epimorphism, γ is also a nonnil-epimorphism.

If $\alpha(e) = 0$, then $(0, e) \in N$. So there exist $a \in A$ and $s_4 \in R \setminus Nil(R)$ such that $s_4f(a) = 0$ and $s_4h(a) = -s_4e$. Since f is a nonnil-monomorphism, $s_5a = 0$ for some $s_5 \in R \setminus Nil(R)$. Thus $-s_5s_4e = s_5s_4h(a) = 0$ and hence $e \in Ntor(E)$. Therefore, α is a nonnil-monomorphism.

It is easy to see that $\gamma \alpha = 0$. Thus $\operatorname{NIm}(\alpha) \subseteq \operatorname{NKer}(\gamma)$.

If $s_6\gamma((b,e) + N) = s_6\nu\mu g(b) = s_6g(b) = 0$ for some $s_6 \in R \setminus Nil(R)$, then there are $a \in A$ and $s_7 \in R \setminus Nil(R)$ such that $s_7f(a) = s_7b$. So

$$s_{7}(b,e) + N = s_{7}(f(a),e) + N$$

= $s_{7}[(f(a),-h(a)) + (0,e+h(a))] + N$
= $s_{7}(0,e+h(a)) + N$
= $s_{7}\alpha(e+h(a)).$

Therefore, $NKer(\gamma) = NIm(\alpha)$, that is, the bottom row is nonnil-exact.

Theorem 2.10. The following diagram with a nonnil-exact row:

$$0 \longrightarrow A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0$$

E

can be completed to the following nonnil-commutative diagram with nonnil-exact rows:

Proof. Set

$$L = \{ (b, e) \in B \oplus E \mid sg(b) = sh(e), s \in R \setminus Nil(R) \}$$

and define

$$\beta(b,e) = b, \ \gamma(b,e) = e, \ b \in B, \ e \in E.$$

Then trivially, for $(b,e) \in B \oplus E$, there exists $s \in R \setminus Nil(R)$ such that $sg\beta(b,e) = sh\gamma(b,e)$. Define $\alpha : A \to L$ by $\alpha(a) = (f(a),0)$. Then $\beta \alpha = f$. Since f is a nonnil-monomorphism, α is a nonnil-monomorphism.

For $e \in E$, since g is a nonnil-epimorphism, we choose $b \in B$ and $s_1 \in R \setminus Nil(R)$ such that $s_1g(b) = s_1h(e)$. Then $(b,e) \in L$ and $\gamma(b,e) = e$. Therefore, γ is an epimorphism.

For $a \in A$, we have $\gamma \alpha(a) = \gamma(f(a), 0) = \gamma(0) = 0$. And for $(b, e) \in NKer(\gamma)$, we have some $s_2 \in R \setminus Nil(R)$ such that $s_2\gamma(b, e) = s_2e = 0$. There exists some $s_3 \in R \setminus Nil(R)$ such that $s_2s_3g(b) = s_2s_3h(e) = 0$. Thus

$$b \in \operatorname{NKer}(g).$$

Since NKer(g) = NIm(f), there exist $a \in A$ and $s_4 \in R \setminus Nil(R)$ such that $s_4b = s_4f(a)$. So we have

$$s_2s_4(b,e) = s_2s_4(f(a),e) = s_2s_4(f(a),0) = s_2s_4\alpha(a).$$

Therefore, the top row is nonnil-exact.

Theorem 2.11. Consider the following diagram Γ of modules and homomorphisms

and the sequence Δ of modules and homomorphisms

$$0 \to A \xrightarrow{\sigma} B \oplus C \xrightarrow{\rho} D \to 0$$

where $\sigma(a) = (\alpha(a), -\beta(a))$ and $\rho(b, c) = f(b) + g(c)$ for $a \in A, b \in B, c \in C$.

1228

(a) The homomorphism ρ is a nonnil-epimorphism if and only if

$$D = \operatorname{NIm}(f) + \operatorname{NIm}(g).$$

(b) The homomorphism σ is a nonnil-monomorphism if and only if

 $\operatorname{NKer}(\alpha) \cap \operatorname{NKer}(\beta) = \operatorname{Ntor}(A).$

- (c) The sequence Δ is a nonnil-complex if and only if the diagram Γ is nonnil-commutative.
- (d) NKer(ρ) ⊆ NIm(σ) if and only if there exist a ∈ A and s ∈ R\Nil(R) such that sb = sα(a) and sc = sβ(a) if s'f(b) = s'g(c) for some s' ∈ R\Nil(R).

Proof. (a) If ρ is a nonnil-epimorphism, then there exist $b \in B$, $c \in C$ and $s_1 \in R \setminus Nil(R)$ such that $s_1d = s_1\rho(b,c) = s_1f(b) + s_1g(c)$ for any element $d \in D$. Thus

$$d = f(b) + g(c) + t \in \operatorname{NIm}(f) + \operatorname{NIm}(g),$$

where $t \in \operatorname{Ntor}(D)$. Therefore $D = \operatorname{NIm}(f) + \operatorname{NIm}(g)$.

Conversely, suppose D = NIm(f) + NIm(g). For any $d \in D$, there exist $d_1 \in \text{NIm}(f)$ and $d_2 \in \text{NIm}(g)$ such that $d = d_1 + d_2$. Hence there exist $b \in B$, $c \in C$ and $s_2, s_3 \in R \setminus Nil(R)$ such that $s_2d_1 = s_2f(b)$ and $s_3d_2 = s_3g(c)$. Thus we have

$$s_2s_3d = s_2s_3(f(b) + g(c)) = s_2s_3\rho(b,c).$$

So $d \in NIm(\rho)$. Therefore, the homomorphism ρ is a nonnil-epimorphism.

(b) It is clear that $Ntor(A) \subseteq NKer(\alpha) \cap NKer(\beta)$. If $a \in NKer(\alpha) \cap NKer(\beta)$, then there exist $s_4, s_5 \in R \setminus Nil(R)$ such that $s_4\alpha(a) = 0, s_5\beta(a) = 0$. So

$$s_4 s_5 \sigma(a) = s_4 s_5(\alpha(a), -\beta(a)) = 0.$$

Since σ is a nonnil-monomorphism, we have $a \in Ntor(A)$. Therefore, $NKer(\alpha) \cap NKer(\beta) = Ntor(A)$.

Conversely, if $s_6\sigma(a) = s_6(\alpha(a), -\beta(a)) = 0$ for some $s_6 \in R \setminus Nil(R)$, then $a \in NKer(\alpha) \cap NKer(\beta) = Ntor(A)$. Therefore, σ is a nonnil-monomorphism.

(c) The sequence Δ is a nonnil-complex if and only if $\operatorname{NIm}(\sigma) \subseteq \operatorname{NKer}(\rho)$, if and only if there exists $s_7 \in R \setminus Nil(R)$ such that

$$s_7 \rho \sigma(a) = s_7 (f \alpha(a) - g \beta(a)) = 0,$$

if and only if the diagram Γ is nonnil-commutative.

(d) Suppose that $\operatorname{NKer}(\rho) \subseteq \operatorname{NIm}(\sigma)$. If s'f(b) = s'g(c) for some $s' \in R \setminus Nil(R)$, then $s'\rho(b,c) = 0$. Hence $(b,c) \in \operatorname{NKer}(\rho) \subseteq \operatorname{NIm}(\sigma)$. Thus there exist an element $a \in A$ and $s \in R \setminus Nil(R)$ such that $s(b,c) = s(\alpha(a),\beta(a))$.

Conversely, if $(b, c) \in \operatorname{NKer}(\rho)$, that is, s'f(b) = s'g(-c) for some $s' \in R \setminus Nil(R)$, then there exist $a \in A$ and $s \in R \setminus Nil(R)$ such that $sb = s\alpha(a)$ and $-sc = s\beta(a)$. Thus $s(b, c) = s\sigma(a)$. Therefore $(b, c) \in \operatorname{NIm}(\sigma)$, which implies that $\operatorname{NKer}(\rho) \subseteq \operatorname{NIm}(\sigma)$.

References

- D. F. Anderson and A. R. Badawi, On *\phi-Pr\"ufer rings and \phi-Bezout rings*, Houston J. Math. **30** (2004), no. 2, 331–343.
- [2] D. F. Anderson and A. R. Badawi, On φ-Dedekind rings and φ-Krull rings, Houston J. Math. 31 (2005), no. 4, 1007–1022.
- [3] K. Bacem and B. Ali, Nonnil-coherent rings, Beitr. Algebra Geom. 57 (2016), no. 2, 297–305. https://doi.org/10.1007/s13366-015-0260-8
- [4] A. R. Badawi, On φ-pseudo-valuation rings, in Advances in commutative ring theory (Fez, 1997), 101–110, Lecture Notes in Pure and Appl. Math., 205, Dekker, New York, 1999.
- [5] A. R. Badawi, On Φ-pseudo-valuation rings. II, Houston J. Math. 26 (2000), no. 3, 473–480.
- [6] A. R. Badawi, On φ-chained rings and φ-pseudo-valuation rings, Houston J. Math. 27 (2001), no. 4, 725–736.
- [7] A. R. Badawi, On divided rings and φ-pseudo-valuation rings, in Commutative rings, 5–14, Nova Sci. Publ., Hauppauge, NY, 2002.
- [8] A. R. Badawi, On nonnil-Noetherian rings, Comm. Algebra 31 (2003), no. 4, 1669–1677. https://doi.org/10.1081/AGB-120018502
- [9] A. R. Badawi, On rings with divided nil ideal: a survey, in Commutative algebra and its applications, 21–40, Walter de Gruyter, Berlin, 2009.
- [10] A. R. Badawi and D. E. Dobbs, Strong ring extensions and φ-pseudo-valuation rings, Houston J. Math. 32 (2006), no. 2, 379–398.
- [11] A. R. Badawi and A. Jaballah, Some finiteness conditions on the set of overrings of a φ-ring, Houston J. Math. 34 (2008), no. 2, 397–408.
- [12] A. R. Badawi and T. G. Lucas, *Rings with prime nilradical*, in Arithmetical properties of commutative rings and monoids, 198–212, Lect. Notes Pure Appl. Math., 241, Chapman & Hall/CRC, Boca Raton, FL, 2005. https://doi.org/10.1201/9781420028249.ch11
- [13] A. R. Badawi and T. G. Lucas, On Φ -Mori rings, Houston J. Math. **32** (2006), no. 1, 1–32.
- [14] A. Benhissi, Nonnil-Noetherian rings and formal power series, Algebra Colloq. 27 (2020), no. 3, 361–368. https://doi.org/10.1142/S1005386720000292
- [15] A. Y. Darani and M. Rahmatinia, On φ-Schreier rings, J. Korean Math. Soc. 53 (2016), no. 5, 1057–1075. https://doi.org/10.4134/JKMS.j150380
- [16] S. Hizem and A. Benhissi, Nonnil-Noetherian rings and the SFT property, Rocky Mountain J. Math. 41 (2011), no. 5, 1483–1500. https://doi.org/10.1216/RMJ-2011-41-5-1483
- [17] R. E. Khalfaoui and N. Mahdou, The φ-Krull dimension of some commutative extensions, Comm. Algebra 48 (2020), no. 9, 3800–3810. https://doi.org/10.1080/ 00927872.2020.1747479
- [18] A. E. Khalfi, H. Kim, and N. Mahdou, On φ-piecewise Noetherian rings, Comm. Algebra 49 (2021), no. 3, 1324–1337. https://doi.org/10.1080/00927872.2020.1834571
- [19] H. Kim and F. Wang, On $\phi\text{-strong Mori rings},$ Houston J. Math. **38** (2012), no. 2, 359–371.
- [20] C. Lomp and A. Sant'Ana, Comparability, distributivity and non-commutative φ-rings, in Groups, rings and group rings, 205–217, Contemp. Math., 499, Amer. Math. Soc., Providence, RI, 2009. https://doi.org/10.1090/conm/499/09804
- [21] X. Yang and Z. K. Liu, On nonnil-Noetherian rings, Southeast Asian Bull. Math. 33 (2009), no. 6, 1215–1223.
- [22] X. Zhang, W. Zhao, and F. Wang, On φ-flat cotorsion theory J. Guangxi Normal University 39 (2021), no. 2, 119-124.
- [23] W. Zhao, A few kinds of commutative rings with the nilradical as prime ideal, J. Neijiang Normal University 30 (2015), no. 6, 11–14.

- [24] W. Zhao, On Φ-flat modules and Φ-Prüfer rings, J. Korean Math. Soc. 55 (2018), no. 5, 1221–1233. https://doi.org/10.4134/JKMS.j170667
- [25] W. Zhao, On φ-exact sequences and φ-projective modules, J. Korean Math. Soc. 58 (2021), no. 6, 1513–1528. https://doi.org/10.4134/JKMS.j210180
- [26] W. Zhao, On nonnil-commutative diagrams and nonnil-projective modules, Comm. Algebra 48 (2022), no. 5, 3079–3090.
- [27] W. Zhao, F. Wang, and G. Tang, On φ-von Neumann regular rings, J. Korean Math. Soc. 50 (2013), no. 1, 219–229. https://doi.org/10.4134/JKMS.2013.50.1.219
- [28] W. Zhao, F. Wang, and X. Zhang, On Φ-projective modules and Φ-Prüfer rings, Comm. Algebra 48 (2020), no. 7, 3079–3090. https://doi.org/10.1080/00927872. 2020.1729362

WEI ZHAO SCHOOL OF MATHEMATICS ABA TEACHERS UNIVERSITY ABA 623002, P. R. CHINA *Email address:* zw9c248@163.com

DECHUAN ZHOU DEPARTMENT OF MATHEMATICS SOUTHWEST UNIVERSITY OF SCIENCE AND TECHNOLOGY MIANYANG 621010, P. R. CHINA *Email address*: zdechuan11119@163.com