DOI QR코드

DOI QR Code

Statistical Analysis of Geometric Parameters and Rock Conditions of Pick Cutters for Roadheaders

로드헤더용 픽커터의 형상변수와 암반조건에 대한 통계적 분석

  • Soo-Ho Chang (Department of Geotechnical Engineering Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Tae-Ho Kang (Department of Geotechnical Engineering Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Chulho Lee (Department of Geotechnical Engineering Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Soon-Wook Choi (Department of Geotechnical Engineering Research, Korea Institute of Civil Engineering and Building Technology)
  • 장수호 (한국건설기술연구원 지반연구본부 ) ;
  • 강태호 (한국건설기술연구원 지반연구본부 ) ;
  • 이철호 (한국건설기술연구원 지반연구본부 ) ;
  • 최순욱 (한국건설기술연구원 지반연구본부 )
  • Received : 2023.09.20
  • Accepted : 2023.10.04
  • Published : 2023.10.31

Abstract

In this study, a total of 326 data on a variety of geometric parameters of pick cutters and the corresponding cuttable rock conditions were collected and built as a database. Statistical analysis of the database showed that there is a significant positive correlation between the parameters that define the geometry of a pick cutter, especially between the parameters related to the length of a pick cutter and the geometry of a tungsten carbide insert. The diameter of a pick cutter shaft was also strongly correlated with the geometry of the inserts. On the other hand, it was difficult to find a clear correlation between the parameters for the rock conditions defined by the four conditions and the geometric parameters of pick cutters, which may be due to the uncertainty of the rock mass and the fact that the application of a pick cutter is presented as a range rather than a numerical single value. However, the mean values of geometric parameters of pick cutters tend to increase as a rock mass becomes harder. However, the pick length parameters are found to decrease as a rock mass becomes harder, which may be a way to reduce the moments that can occur when using long pick cutters in a hard rock condition.

본 연구에서는 픽커터의 다양한 형상변수들과 그에 따른 절삭 가능 암반 조건들에 대한 총 326개의 정보를 수집하고 데이터베이스를 구축하였다. 이와 같이 구축한 데이터베이스를 대상으로 통계분석을 실시한 결과, 픽커터의 형상을 정의하는 변수들 사이에는 유의미한 양(+)의 상관관계가 존재하는 것으로 나타났다. 특히, 픽커터의 길이 관련 변수들과 텅스텐 카바이드 삽입재의 형상 변수들 사이의 상관관계가 높게 나타났다. 픽커터 샤프트의 직경도 삽입재의 형상변수들과 밀접한 상관관계를 나타내었다. 반면, 네 가지 조건으로 정의한 암반 조건에 대한 변수와 픽커터의 형상 변수들 사이에는 뚜렷한 상관관계를 확인하기 어려웠다. 이는 암반의 불확실성으로 인해 픽커터의 적용 대상을 수치가 아닌 적용 가능 범위로 제시했기 때문인 것으로 사료된다. 단, 암반이 강해질수록 픽커터 형상변수들의 평균값이 증가하는 경향을 나타내었다. 그러나 픽커터의 길이 관련 변수들은 암반이 강해질수록 오히려 작아지는 것으로 나타났는데, 이는 경암반에서 길이가 긴 픽커터를 사용할 때 발생할 수 있는 모멘트의 발생을 줄이기 위한 방안으로 사료된다.

Keywords

Acknowledgement

본 연구는 한국건설기술연구원의 주요사업인 "최대 압축강도 100 MPa의 암반 굴착이 가능한 로드헤더용 픽커터 국산화 기술 개발(과제번호: 20230310-001)"의 일환으로 수행되었습니다.

References

  1. Bilgin, N., Demircin, M.A., Copur, H., Balci, C., Tuncdemir, H., and Akcin, N., 2006, Dominant rock properties affecting the performance of conical picks and the comparison of some experimental and theoretical results, International Journal of Rock Mechanics and Mining Sciences, 43(1), 139-156. https://doi.org/10.1016/j.ijrmms.2005.04.009
  2. Bilgin, N., Dincer, T., Copur, H., and Erdogan, M., 2004, Some geological and geotechnical factors affecting the performance of a roadheader in an inclined tunnel. Tunnelling and Underground Space Technology, 19(6), 629-636. https://doi.org/10.1016/j.tust.2004.04.004
  3. Chang, S.-H., 2015, A Consideration for Mechanical Rock Excavation Focusing on TBM and Roadheader, Journal of the Korean Society of Mineral and Energy Resources Engineers, 52(5), 531-548. https://doi.org/10.12972/ksmer.2015.52.5.531
  4. Chang, S.-H., Lee, C., Kang, T.-H., Ha, T., and Choi, S.-W., 2017, Effect of hardfacing on wear reduction of pick cutters under mixed rock conditions, Geomechanics and Engineering, 13(1), 141-159. https://doi.org/10.12989/GAE.2017.13.1.141
  5. Cho, M.-G., Cho, J.-W., Kim, M.-G., Jeong, J.-H., and Choi, S.-H., 2023, Operating Process of Transverse Type Roadheader for Tunnel Excavation in Korea, Tunnel and Underground Space, 33(1), 1-9. https://doi.org/10.7474/TUS.2023.33.1.001
  6. Choi, S.-W., Chang, S.-H., Lee, G.-P., and Park, Y.-T., 2014a, Performance estimation of conical picks with slim design by the linear cutting test (II): depending on skew angle variation, Journal of Korean Tunnelling and Underground Space Association, 16(6), 585-597. https://doi.org/10.9711/KTAJ.2014.16.6.585
  7. Choi, S.-W., Chang, S.-H., Park, Y.-T., and Lee, G.-P., 2014b, Performance estimation of conical picks with slim design by the linear cutting test (I): depending on attack angle variation, Journal of Korean Tunnelling and Underground Space Association, 16(6), 573-584. https://doi.org/10.9711/KTAJ.2014.16.6.573
  8. Choi, S.-W., Kang, T.-H., Chang, S.-H., Lee, C., Lee, G.-P., and Kim, C.-Y., 2016, Performance estimation depending on the insert size of conical picks by linear cutting test, Journal of Korean Tunnelling and Underground Space Association, 18(2), 221-233. https://doi.org/10.9711/KTAJ.2016.18.2.221
  9. Comakli, R., Kahraman, S., and Balci, C., 2014, Performance prediction of roadheaders in metallic ore excavation, Tunnelling and Underground Space Technology, 40, 38-45. https://doi.org/10.1016/j.tust.2013.09.009
  10. Deshmukh, S., Rainaa, A.K., Murthyb, V.M.S.R., Trivedia, R., and Vajrea, R., 2020, Roadheader - A comprehensive review, Tunnelling and Underground Space Technology, 95, 103148.
  11. Ebrahimabadi, A., Azimipour, M., and Bahreini, A., 2015, Prediction of roadheaders' performance using artificial neural network approaches (MLP and KOSFM)", Journal of Rock Mechanics and Geotechnical Engineering, 7(5), 573-583. https://doi.org/10.1016/j.jrmge.2015.06.008
  12. Eyyuboglu, E.M. and Bolukbasi, N., 2005, Effects of circumferential pick spacing on boom type roadheader cutting head performance, Tunnelling and Underground Space Technology, 20(5), 418-425. https://doi.org/10.1016/j.tust.2005.02.002
  13. Hekimoglu, O.Z. and Fowell, R.J., 1991, Theoretical and practical aspects of circumferential pick spacing on boom tunnelling machine cutting head. Mining Science and Technology, 13(3), 257-270. https://doi.org/10.1016/0167-9031(91)90397-U
  14. Hekimoglu, O.Z. and Ozdemir, L., 2004, Effect of angle of wrap on cutting performance of drum shearers and continuous miners. Mining Technology, 113(2), 118-122. https://doi.org/10.1179/037178404225004977
  15. Kahraman, E. and Kahraman, S., 2016, The performance prediction of roadheaders from easy testing methods. Bulletin of Engineering Geology and the Environment, 75(4), 1585-1596. https://doi.org/10.1007/s10064-015-0801-2
  16. Kim, M.-G., Song, C.-H., Oh, J.-Y., and Cho, J-.W., 2022, Contribution Assessment of Roadheader Performance Indexes by Analysis of Variance, Tunnel and Underground Space, 32(6), 386-396. https://doi.org/10.7474/TUS.2022.32.6.386
  17. Park, Y.-T., Choi, S.-W., Park, J.-H., Lee, C.-H., and Chang, S.-H., 2013, Excavation Mechanism of Roadheader and Statistical Analysis of its Key Parameters Based on Database, Tunnel and Underground Space, 23(5), 428-441. https://doi.org/10.7474/TUS.2013.23.5.428
  18. Pichler, J., 2011, Mechanical excavation of tunnels with Roadheaders, Lecture note, Post graduate master course - Tunnelling and Tunnel Boring Machine, Politecnico Di Torino, 1-78.
  19. Sandvik, 2010, Mineral Ground Tools - Mining, Product Catalog, http://www.miningandconstruction.sandvik.com.
  20. Shahabedin, H., Jeong, H., and Jeon, S., 2018, Prediction Model for Specific Cutting Energy of Pick Cutters Based on Gene Expression Programming and Particle Swarm Optimization, Tunnel and Underground Space, 28(6), 651-669. https://doi.org/10.7474/TUS.2018.28.6.651
  21. Tunnel Business Magazine, 2011, Roadheaders in Hard Rock-East Side Access Among North American Projects Employing Roadheader Technology, February 2011, 20-21.