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Abstract 

Malicious hate speech and gender bias comments are common in online communities, causing social problems 

in our society. Gender bias and hate speech detection has been investigated. However, it is difficult because 

there are diverse ways to express them in words. To solve this problem, we attempted to detect malicious com-

ments in a Korean hate speech dataset constructed in 2020. We explored bidirectional encoder representations 

from transformers (BERT)-based deep learning models utilizing hyperparameter tuning, data sampling, and 

logits ensembles with a label distribution. We evaluated our model in Kaggle competitions for gender bias, 

general bias, and hate speech detection. For gender bias detection, an F1-score of 0.7711 was achieved using 

an ensemble of the Soongsil-BERT and KcELECTRA models. The general bias task included the gender bias 

task, and the ensemble model achieved the best F1-score of 0.7166. 
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1. Introduction 

Online users express their opinions through short sentences in news comments, online communities, 

and social network platforms [1-4]. In these environments, opinions are freely expressed because 

anonymity is guaranteed; however, it has severe side effects: hateful expressions are overused [5-8]. 

Therefore, we attempted to investigate the severity of cyberbullying and celebrity suicides caused by 

malicious comments from anonymous users. Major portal companies use a function to remove malicious 

comments or prevent readers from writing such comments. However, it is difficult to filter malicious 

comments, as there are diverse ways to express them in words. Recently, a method of classifying 

malicious comments has been investigated to solve this problem, and hateful expression detection is 

applied to a news comment filtering system [9-12]. Methods for developing such a system include deep 

learning and bidirectional encoder representations from transformers (BERT)-based pretraining [13-17]. 

BERT is a pretrained embedding model that uses a transformer and exhibits good performance in natural 

language processing. After the advent of BERT, many attempts have been made to develop language 

models that outperform BERT, for example, transformer-based models such as ALBERT, RoBERTa, 

and ELECTRA. 

※ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which 

permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. 

Manuscript received September 6, 2022; first revision November 29, 2022; second revision January 4, 2023; accepted January 29, 2023. 
*Corresponding Author: Hyeokman Kim (hmkim@kookmin.ac.kr) 
Dept. of Computer Science, Kookmin University, Seoul, Korea (ggj06281@kookmin.ac.kr, sskang@kookmin.ac.kr, hmkim@kookmin.ac.kr) 
Current affiliation for author, Sanggeon Yun, is Dept. of Computer Science, University of California, Irvine, CA, USA.

J Inf Process Syst, Vol.19, No.5, pp.641~651, October 2023 ISSN 1976-913X (Print) 

https://doi.org/10.3745/JIPS.04.0287 ISSN 2092-805X (Electronic) 



BERT-Based Logits Ensemble Model for Gender Bias and Hate Speech Detection 

 

642 | J Inf Process Syst, Vol.19, No.5, pp.641~651, October 2023 

Regarding the Korean language, BERT-based models have been built on large-scale text corpus and 

evaluated using various datasets [18,19]. For example, the types of hateful expressions have been 

analyzed using user comments on news articles. Cho and Moon [20] developed a hate speech and gender 

bias dataset for machine learning. They made it freely available on GitHub and opened a hate expression 

detection contest on Kaggle to share model performance and evaluation results. This contest comprises 

three topics: general bias, gender bias, and hate speech detection. In hate speech detection tasks, attempts 

have been made to achieve higher performance using the ensemble method. Zimmerman et al. [21] 

developed a logits ensemble model with equal weights to the result vectors of a single model and achieved 

an improvement of approximately 2%. In contrast to a logits ensemble, Karim et al. [22] proposed a 

majority voting-based ensemble and achieved an improvement of approximately 1.15%. In this study, 

we aim to achieve better performance improvement by proposing a novel logits ensemble model that 

combines various models using different weighting schemes. We evaluated model performance by 

participating in the Kaggle competition. The remainder of this paper is organized as follows. Section 2 

introduces studies related to pretrained BERT embedding models. The hate speech dataset and the logits 

ensemble model with a label distribution are described in Section 3. Section 4 presents the experimental 

results and hyperparameter setting with finetuning. Section 5 describes future work with concluding 

remarks. 

 

 

2. Pretrained BERT Embedding Models 

To evaluate the performance of our model, four pretrained embedding models are used as base models. 

Table 1 shows the pretrained models trained independently, that is, they are trained with their datasets. 

 

Table 1. Pretrained embedding models 

Model Pretrained models 

BERT-base �������������
  

RoBERTa-base ����������	
���
����, ����������� 

ELECTRA-base ���	��
���������  

 

�������������
  

KoBERT (Korean BERT pretrained) is a BERT-based model built by SKT. The SKT NLP group 

attempted to outperform Google’s multilingual BERT model. Training has been conducted using a 

dataset consisting of 5 million sentences and 54 million words using Korean wiki text. It has a dictionary 

of 8,002 tokens trained on Korean wiki text by the SentencePiece tokenizer. 

 

����������	
���
����  

Soongsil-BERT is a pretraining model based on the RoBERTa model built at Soongsil University. Most 

Korean BERT models are trained on refined datasets such as the Korean wiki text and news articles. 

However, this model was built on SNS data of internet communities, a corpus comprising speech 

sentences and web documents collected by the National Institute of the Korean Language. The dataset 

consists of more than 100 million sentences, and its dictionary trained by the byte pair encoding (BPE) 

tokenizer has 16,000 tokens. 
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�����������  

It is a RoBERTa-based pretrained model built for the Korean Language Understanding Evaluation 

(KLUE) platform. It was developed to provide a baseline model, along with the construction of a dataset 

for evaluating Korean language models. By combining five corpora, more than 400 million sentences 

were collected. Its dictionary has 32,000 tokens and is trained by the BPE tokenizer. 

 

���	��
�������	
  

KcELECTRA (Korean comments ELECTRA) is a pretrained model based on the ELECTRA model. 

Similar to Soongsil-BERT, it was developed to reflect real-world characteristics such as new words and 

typos. The dataset comprises 100 million sentences with 30,000 tokens collected from the comments of 

news articles. 

 

 

3. Gender Bias and Hate Speech Detection 

The structure of the BERT-based model for hate speech detection is shown in Fig. 1. Hate speech 

detection is performed using the BERT embedding vector of the CLS token, which is given to the input 

vector as a special classification token of the fully connected (FC) layers. Embedding vectors of gender 

bias or hate speech comments are given by a pretrained BERT model, and the FC layers are tested for 

one and two layers. In the case of two layers, a hidden layer is set to produce a 1024-dimensional vector, 

and dropout regulation is applied to the corresponding hidden layer.  

 

 

Fig. 1. BERT-based model architecture. 

 

Furthermore, changing the number of FC layers, we attempted to improve performance using ensemble 

strategies of several models. The structure of the proposed ensemble model for hate speech detection is 

shown in Fig. 2. First, our ensemble model retrieves predictions ��, ��, … , �
 of a given sentence �� from 

pretrained models ��, ��, … ,�
 trained through transfer learning. 

Next, our model applies the logits ensemble to the retrieved predictions �� , with scaler values �� 

indicating weights. This exploits the characteristics of the pretrained models: as the pretrained models 

were trained using their corpus, the interpretation of new data might be different. Therefore, even if 

training is performed using the same dataset, the performance of the models may not be the same. When 
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��, ��, ⋯ , �� are given as prediction results from k different classifiers, a logits ensemble calculates the 

final prediction result, as expressed in Eq. (1): 

 

� = 	��� + 	��� + ⋯ + 	���, (1) 

 

where 	� ∈ 
0, 0.01, 0.02, … , 0.99, 1� denotes a set of the best-performing values on the validation set 

that satisfy ∑ 	��  =  1, as obtained by a depth-first searching algorithm. 

 

 
Fig. 2. Logits ensemble with label distribution. 

 

Finally, the model performs an ensemble based on the distribution of labels based on the logits 

ensemble result �. This ensemble technique uses the statistical correlation between two different tasks 
 

and � that use the same dataset with two hypotheses: 1) the test set must follow the distribution between 

the two tasks on the validation or training set; 2) the task B model should outperform the task A model. 

We define the distribution ����|��� as the number of data points with the label �� in task 
 and the label 

�� in task � divided by the number of data points with the label �� in task �. The technique uses a high-

performance trust model for task � and assigns weight to each prediction value �� ∈ � for the label 
� in 

task 
 according to the distribution ����  =  
�|��  =  ����, where ��� denotes the prediction of the trust 

model. If ����|��� is considered too low, the ensemble model determines whether the prediction of the 

task 
 model is likely wrong and allocates a low weight to the prediction value. 

Gender bias and hate speech detection is a classification problem with different labels but the same 

dataset. Therefore, there is a statistical correlation between the different labels. Using this correlation, an 

ensemble model that performs different classifications can be developed. Our ensemble model was 

constructed using the label distribution shown in Table 2. From the label distribution, an ensemble 

between bias detection and hate speech detection can be differentiated. For example, if the result in the 

bias detection model is not “none,” we lower the weight of the “none” prediction in hate speech detection. 

In other words, the weighting of the ensemble is performed conditionally using the bias detection model, 

which has better performance than the hate speech detection model. 
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Table 2. Distribution of labels in the annotated corpus (unit: %) 

 Hate Offensive None Sum (Bias) 

Gender 10.15 0.58 0.98 15.71 

Others 7.48 8.94 1.74 18.16 

None 7.48 19.13 39.08 65.70 

Sum (Hate) 25.11 32.66 41.80 100 

 

For each pretrained model �� , we not only performed finetuning operations such as changing the 

number of FC layers but also improved model performance using various other strategies. The main 

strategies for improving the performance are as follows. 

Extreme gradient boosting (XGBoost) is an ensemble technique that makes strong predictions by 

combining several weak decision trees. Because it cannot be directly applied to natural language, we 

attempted to improve performance by training the BERT-based models with a multilayer perceptron head 

and learning XGBoost with the last hidden state output value of the BERT models. 

The hate speech dataset is labeled on three types of tags: general bias, gender bias, and hate speech 

tags. It consists of a train set, a dev set, and a test set that is freely available at https://github.com/kocohub/ 

korean-hate-speech. A total of 9,381 human-labeled comments are split into training, validation, and test 

sets with 7,896, 471, and 974 test data points, respectively. The test set is unlabeled, but the train and dev 

sets are labeled with the three tags, as shown in Fig. 3. 

The training set has an uneven distribution of observations, which is not a balanced dataset. Because 

an unbalanced dataset may cause poor performance, we adopted a data sampling strategy to make the 

dataset more balanced [23]. Data sampling strategies for solving the unbalanced dataset problem include 

undersampling and oversampling. Undersampling has the disadvantage of significantly reducing the 

number of data points used in model training. In a situation, where the size of the training set is small, 

reducing the number of data points degrades model performance. Therefore, we adopted oversampling 

in which there is no risk of reducing the size of the data. Our dataset was constructed through random 

shuffling by simply amplifying the data of a smaller size by n times. 

 

 
(a) (b) (c) 

Fig. 3. Distribution of class labels for each dataset: (a) gender bias, (b) general bias, and (c) hate speech. 

 

 

4. Experiments and Results 

We experimented with all three tasks, which are gender bias, general bias, and hate speech detection. 

In each task, hyperparameter tuning was performed to maximize the performance of our model. The 

aforementioned strategies were used to further improve our model. The experimental environment is 
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Windows 10 with Intel Core i7-7700 CPU @3.60 GHz, 64 GB RAM, and RTX 3060 GPU. The models 

were implemented using the PyTorch framework. 

 

4.1 Gender Bias Detection 

For each pretraining model, transfer learning for the Korean gender bias detection problem was 

performed without finetuning. The adjusted hyperparameters are the number of FC layers (1, 2), dropout 

rate (0.0, 0.1, 0.3, 0.5), learning rate (1e-5, 2e-5, 5e-5), and batch size (16, 32, 64). We used AdamW as 

an optimizer for training, warmup and linear as a scheduler, and cross-entropy loss as a loss function. 

Table 3 shows the best performance results for each pretraining model before tuning. The model that 

showed the best performance on the validation set was the RoBERTa-based model of KLUE, with an F1-

score of 0.6145 on the test set, which is lower than the baseline of 0.6814. Accordingly, fine-tuning was 

performed on the pretrained model. Due to the large size of the BERT model, the maximum batch size 

was set to 16, as presented in Table 4. During fine-tuning, the learning rate was reduced to prevent the 

weight of the base model from being significantly modified. 

The Soongsil-BERT embedding model exhibited the best performance on the validation set and 

obtained an F1-score of 0.7416 on the test set. For higher performance, a logits ensemble strategy was 

used, and the results are shown in Table 5. In Korean gender bias detection, an ensemble of the Soongsil-

BERT and KcELECTRA models obtained the highest F1-score of 0.7711. 

 

Table 3. Hyperparameters settings 

Base model FC layers Dropout rate Learning rate Batch size 
Best F1-score 

(validation set) 

��
����������
  2 0.3 2e-5 16 0.3999 


���
�������� !
"#$% 2 0.1 2e-5 16 0.6363 


���
���&'�  2 0.3 5e-5 64 0.6428 

 

Table 4. Hyperparameter settings with fine-tuning 

Base model FC layers Dropout rate Learning rate Batch size Best F1-score  


���
�������� !
"#$%  2 0.1 1e-5 16 0.8085 


���
���&'�  2 0.3 1e-5 16 0.7878 

�����
��(�&�)��*  2 0.5 1e-5 16 0.7812 

 

Table 5. Logits ensemble result for gender bias detection 

Ensemble model 
Best F1-score  Baseline 

Validation set Test set Test set 


���
�������� !
"#$% + 
���
���&'� 0.8142 0.7458 
0.6814 


���
�������� !
"#$% + �����
��(�&�)��* 0.8217 0.7711 

 

4.2 General Bias Detection 

We explored Korean general bias detection. Hyperparameter tuning was performed in a manner similar 

to Korean gender bias detection. The results are shown in Table 6. In the finetuned layers column of the 
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table, FULL indicates that all layers of the base model are fine-tuned, and 0 indicates that no layers of 

the base model are fine-tuned. The ELECTRA embedding model exhibited the best performance on the 

validation set and achieved an F1-score of 0.6955 on the test set, which is higher than the baseline of 

0.6326 shown in Table 7. For higher performance improvement, we applied the logits ensemble strategy. 

The results are shown in Table 7. 

An ensemble of the Soongsil-BERT and KcELECTRA models achieved a higher F1-score of 0.7139 

on the test set than when using a single model. Because the general bias problem entails a gender bias 

problem well-trained in Korean gender bias detection, the ensemble method exhibited the best 

performance in gender bias detection. A higher F1-score of 0.7166 was achieved on the test set. 

 

Table 6. Fine-tuning for general bias detection 

Base model 
Fine-tuned 

layers FC layers Dropout rateLearning rate Batch size Best F1-score 

 
���
�������� !
"#$% 0 2 0.1 2e-5 32 0.6597 

 
���
�������� !
"#$% FULL 2 0.1 2e-5 16 0.7656 

�����
��(�&�)��* 0 2 0.3 5e-5 32 0.4603 

�����
��(�&�)��* FULL 2 0.5 1e-5 16 0.7754 

 

Table 7. Logits ensemble result for general bias detection 

Ensemble model 
Best F1-score  Baseline 

Validation set Test set Test set 


���
�������� !
"#$% + �����
��(�&�)��* 0.9603 0.7139 

0.6326 
���
�������� !
"#$% + �����
��(�&�)��*

+ ������������������������ 
- 0.7166 

 

4.3 Hate Speech Detection 

We applied our model to the hate speech detection task, and the results are shown in Table 8. The 

KcELECTRA embedding model achieved the highest F1-score on the validation set and an F1-score of 

0.6431 on the test set, which is higher than the baseline of 0.5255. An ensemble strategy has been 

investigated for improvement. We attempted to improve performance using a logits ensemble of the 

RoBERTa-based model of KLUE and the KcELECTRA model. The ensemble achieved higher 

performance than the single model, with an F1-score of 0.6524 on the test set. Next, we investigated the 

best-performing classifier and ensemble in the general bias detection task. Note that no classification 

class in general bias detection matches a classification class in hate speech detection. Therefore, an 

ensemble using the label distribution was developed, which achieved an F1-score of 0.6574, which is 

higher than that of the logits ensemble model. 

 

Table 8. Logits ensemble result for hate speech detection 

Ensemble model 
Best F1-score  Baseline 

Validation set Test set Test set 

�����
��(�&�)��* +  ������ 0.7442 0.6032 

0.5255 

���
���&'� + �����
��(�&�)��* 0.7435 0.6524 


���
���&'� + �����
��(�&�)��*

+!����������������������� 
- 0.6574 
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Table 9 shows the rankings of our models in the Kaggle leaderboard (http://www.kaggle.com/c/ 

korean-bias-detection) as of August 20, 2022. We achieved 1st place in both the general bias and gender 

bias tasks. We attempted to improve our model through additional research on the ensemble strategy 

using a distribution between general bias and hate speech, achieving the highest performance. 

 

Table 9. Final results on the Kaggle leaderboard 

Kaggle competition Best model Teams Ranking F1-score 

Gender bias ����������	
���
����

+ ���	��
��������� 

17 1 0.7711 

General bias ����������	
���
���� + ���	��
���������

+ "#$#%�&�'�()�*#& 

14 1 0.7166 

Hate speech ����������� + ���	��
���������

+ "#$#%�&�'�()�*#&  

65 4 0.6574 

 

 

5. Discussion 

Our quantitative evaluation has demonstrated the effectiveness of the proposed ensemble approach. 

We showed significant performance improvement using our proposed logits ensemble by achieving 

10.8%, 2.64%, and 1.43% performance improvement for gender bias, general bias, and hate speech tasks, 

respectively. The logits ensemble outperforms the other models on binary classification problems, 

improving performance by approximately 4–7 times. Moreover, we improved performance by proposing 

a distribution-based ensemble technique that achieved 0.38% and 0.77% higher performance on the 

general bias and hate speech tasks, respectively. Because we performed this technique only for cases with 

significantly low distributions, it achieved a lower improvement than the logits ensemble. We believe 

that this technique can exhibit significant improvement on tasks that have many classes, where 

distribution values ����|��� are more varied. 

Zimmerman et al. [21] developed a logits ensemble method with equal weights to the result vectors of 

a single model and achieved an improvement of approximately 2%. However, our logits ensemble model 

based on a weighting method exhibited higher performance with an improvement of 1.43%–10.8%. 

Moreover, in contrast to our model, which used only 3–4 pretrained models, they used 10 models to 

achieve such improvement. This indicates the proposed logits ensemble method that uses a depth-first 

searching algorithm can fully utilize the capability of ensembled models and achieve high performance 

even with a few pretrained models. 

Karim et al. [22] proposed a voting-based ensemble technique using various pretrained models and 

achieved approximately 1.15% performance improvement. However, our ensemble model with a label 

distribution achieved a higher improvement of 1.44%–2.65%. This demonstrates the strong competitiveness 

of our proposed ensemble model compared with widely used ensemble techniques such as voting and 

boosting. 

 

Limits of our approach and potential improvement directions: 

Despite the good performance improvement of the proposed ensemble model, several directions could 

still be explored. First, our proposed logits ensemble model uses depth-first searching to find weights 	�. 
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This can be a critical issue in terms of speed, when the number of classes is increased or if we want to 

finetune weights. Various optimization methods, such as Bayesian optimization or even neural network 

models, can be used to better tune weights. Second, in the distribution-based ensemble, we adjusted the 

weights manually. We can improve performance by finding a way to compute effective weights from a 

given label distribution. 

 

 

6. Conclusion 

Cyberbullying and malicious comments by anonymous users cause severe social problems in 

cyberspace. It has resulted in the suicide of a celebrity. To solve this problem, we explored the three 

detection tasks of general bias, gender bias, and hate speech. We proposed a logits ensemble model that 

combines various models using a weighting scheme. Our ensemble model achieved higher performance 

than single models. Moreover, we achieved the best performance by developing an ensemble with a label 

distribution of general and gender bias datasets, where there is a statistical correlation between the labels. 

Zimmerman et al. [21] developed a logits ensemble method with equal weights and achieved an 

improvement of approximately 2%. However, our logits ensemble model based on a weighting method 

and label distribution exhibited better performance with an improvement of 1.43%–10.8%. Malicious 

comment and hateful expression detection has been investigated; however, it has limitations because 

there are many variants of hate expressions. Our ensemble model improved the accuracy of bias and hate 

speech detection. As further research, we are constructing a large-scale dataset for the toxic and hate 

speech domain. 
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