DOI QR코드

DOI QR Code

지도 일반화 알고리듬의 임계값 설정에 따른 소축척 지도 제작의 효용성 연구

A Study on the Effectiveness of Small-scale Maps Production Based on Tolerance Changes of Map Generalization Algorithm

  • 김화경 (숭실대학교 IT정책경영학과) ;
  • 류재학 (숭실대학교 IT정책경영학과) ;
  • 허지용 (숭실대학교 IT정책경영학과) ;
  • 신용태 (숭실대학교 IT정책경영학과)
  • 투고 : 2023.07.05
  • 심사 : 2023.08.21
  • 발행 : 2023.10.31

초록

Recently, various geographic information systems have been used based on spatial information of geographic information systems. Accordingly, it is essential to produce a large-scale map as a small-scale map for various uses of spatial information. However, maps currently being produced have inconsistencies between data due to production timing and limitations in expression, and productivity efficiency is greatly reduced due to errors in products or overlapping processes. In order to improve this, various efforts are being made, such as publishing research and reports for automating domestic mapping, but because there is no specific result, it relies on editors to make maps. This is mainly done by hand, so the time required for mapping is excessive, and quality control for each producer is different. In order to solve these problems, technology that can be automatically produced through computer programs is needed. Research has been conducted to apply the rule base to geometric generalization. The algorithm tolerance setting applied to rule-based modeling is a factor that greatly affects the result, and the level of the result changes accordingly. In this paper, we tried to study the effectiveness of mapping according to tolerance setting. To this end, the utility was verified by comparing it with a manually produced map. In addition, the original data and reduction rate were analyzed by applying generalization algorithms and tolerance values. Although there are some differences by region, it was confirmed that the complexity decreased on average. Through this, it is expected to contribute to the use of spatial information-based services by improving tolerances suitable for small-scale mapping regulations in order to secure spatial information data that guarantees consistency and accuracy.

키워드

참고문헌

  1. 건설기술연구원, "건설공사 표준품셈", 국토교통부, 2022. 
  2. 국토교통부, "국가공간정보포털", 공간정보소개 http://www.nsdi.go.kr/lxportal/?menuno=4064. 
  3. 국토교통부 국토지리정보원, 지도제작 자동화 방안 연구 및 파생체계 개발, 진한엠앤비, 2020. 
  4. 국토지리정보원, "지형도 도식적용규정", 국토교통부, 2013. 
  5. 국토지리정보원, "수치지형도 작성 작업규정", 국토교통부, 2013. 
  6. 국토지리정보원, "대축척 수치지도의 소축척 변환 연구", 국토교통부, 1998. 
  7. 김기홍, 이용욱, 이상호, 박홍기, "시대 변화에 대응하는 국가기본도 정의에 관한 연구", 한국측량학회지, 제37권, 제6호, 2019. 
  8. 김남신, "규칙기반 모델링에 의한 하계망 일반화에 관한 연구", 대한지리학회지, 제39권, 제4호, 2004. 
  9. 김현미, 이상일, "우리나라 디지털 행정구역 경계 파일의 일반화에 관한 연구: 주제도 제작용 기본도를 중심으로", 한국지도학회지, 제21권, 제2호, 2021, 29-44.  https://doi.org/10.16879/jkca.2021.21.2.029
  10. 김화경, "공간데이터 마이닝을 활용한 소축척 지도 일반화 기법에 관한 연구", 숭실대학교 석사학위논문, 2023. 
  11. 박경식, 임인섭, 최석근, "수치지도 일반화 위치정확도 품질평가", 한국측량학회지, 제19권, 제2호, 2001, 173-181. 
  12. 이상기, 김태완, 서봉국, "실내 내비게이션 지도의 적정 크기 결정을 위한 정보량 비교 방안", 산업디자인학연구, 제15권, 제1호, 2021, 27-35.  https://doi.org/10.37254/ids.2021.03.55.03.27
  13. 이재은, "기계학습을 활용한 지도 일반화 개선 방안 연구_건물과 도로객체의 선택적 삭제를 중심으로", 서울대학교 박사학위논문, 2020. 
  14. 이재은, "임계값 설정에 따른 선형 단순화 알고리듬의 반응 특성 연구", 한국측량학회지, 제30권, 제4호, 2012. 
  15. 조영선, "대축척 수치지도를 이용한 효율적인 일반화 자료처리 작업공정 개발", 충북대학교 석사학위논문, 2004. 
  16. 최병길, "수치지도 일반화에 있어서 단순화에 관한 연구", 한국측량학회지, 제19권, 제2호, 2001, 199-208. 
  17. 최석근, 김명호, 황창섭, "효율적인 일반화 자료처리를 위한 작업공정 개발", 한국지리정보학회지, 제6권, 제3호, 2003. 
  18. 최신영, 이성희, 이기준, "지도 일반화를 위한 위상적 일관성 유지", 한국정보과학회 학술발표논문집, 1998. 
  19. Buttenfield, B.P. and R.B. McMaster, Map Generalization: Making rules for Knowledge Representation, Longman, Harlow/Wiley, New York, 1991. 
  20. Cecconi, A., "Integration of Cartographic Generalization and Multi-Scale Databases for Enhanced Web Mapping", 2003. 
  21. Cheung, C.K. and W. Shi, "Positional error modeling for line simplification based on automatic sbape similarity analysis in GlS", Computers & Geoscience, Vol.32, 2006, 462-475.  https://doi.org/10.1016/j.cageo.2005.08.002
  22. Christophe, S. and A. Ruas, "Detecting Building Alignments for Generalisation Purposes", Proceedings of the Joint International Symposium on Geospatial Theory, 2002. 
  23. Li, C., Y. Yin, P. Wu, and W. Wu, "An area merging method in map generalization considering typical characteristics of structured geographic objects", Cartography And Geographic Information Science, Vol.48, No.3, 2021, 210-224.  https://doi.org/10.1080/15230406.2020.1863862
  24. Li, Z., Algorithmic Foundation of Multi-scale Spatial Representation, CRC Press (Taylor & Francis Group), Boca Raton, New York, London, 2006. 
  25. Li, Z., "Digital map generalization at the age of enlightenment: a review of the first forty years", The Cartographic Journal, Vol.44, No.1, 2007. 
  26. Li, Z. and B. Su, "From phenomena to essence: envisioning the nature of digital map generalisation", The Cartographic Journal, Vol.32, No.1, 1995, 45-47.  https://doi.org/10.1179/caj.1995.32.1.45
  27. Gruget, M., Touya, G., Muehlenhaus, L., "Missing the city for buildings? A critical review of pan-scalar map generalization and design in contemporary zoomable maps", International Journal of Cartography, Vol.9, No.2, 2023, 255-285. 
  28. McMaster, R.B. and K.S. Shea, "Generalization in Digital Cartography", Association of American Geographers, Washington DC, 1992. 
  29. Muller, J.C., J.P. Lagrange, and R. Weibel (Eds.), GIS and generalization: Methodology and practice, Taylor and Francis: London, 1995. 
  30. Ruas, A. and C. Plazanet, "Strategies for automated generalization", In Proceedings of 7th International Symposium on Spatial Data Handling, International Office for Cadastre and land Records, 1996. 
  31. Shi, W., and C. Cheung, "Pe1fo111lance evaluation of line simplification algorithms for vector generalization", The Cartographic Journal, Vol.43, No.1, 2006, 27-44.  https://doi.org/10.1179/000870406X93490
  32. Savino, S., "A solution to the problem of the generalization of the Italian geographical databases from large to medium scale: approach definition, process design and operators implementation", Universita degli studi di Padova Tesi di Dottorato UNIPD, 2011. 
  33. Shahriari, N., Tao, V., "Minimizing positional errors in line simplification using adaptive tolerance values", Symposium on Geospatial Theory, Ottawa, 2002, 153-166. 
  34. Slocum, T.A., R.B. McMaster, F.C. Kessler, and H.H. Howard, 지도학과 지리적 시각화, 시그마프레스, 2014. 
  35. Xiao, T., T. Ai, H. Yu, M. Yang, and P. Liu, "A point selection method in map generalization using graph convolutional network model", Cartography and Geographic Information Science, 2023. 
  36. Yan, X., T. Ai, and X. Zhang, "Template matching and simplification method for building features based on shape cognition", ISPRS International Journal of Geo-Information, 2017.