DOI QR코드

DOI QR Code

Identification of Fusarium Basal Rot Pathogens of Onion and Evaluation of Fungicides against the Pathogens

  • Jong-Hwan Shin (Horticultural and Herbal Crop Environment Division, National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Ha-Kyoung Lee (Horticultural and Herbal Crop Environment Division, National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Chang-Gi Back (Horticultural and Herbal Crop Environment Division, National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Soo-hyun Kang (Allium Vegetables Research Institute, National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Ji-won Han (Allium Vegetables Research Institute, National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Seong-Chan Lee (Horticultural and Herbal Crop Environment Division, National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • You-Kyoung Han (Horticultural and Herbal Crop Environment Division, National Institute of Horticultural & Herbal Science, Rural Development Administration)
  • Received : 2023.03.08
  • Accepted : 2023.06.18
  • Published : 2023.08.31

Abstract

Onion (Allium cepa L.) is an economically important vegetable crop worldwide. However, various fungal diseases, including Fusarium basal rot (FBR), neck rot, and white rot, reduce onion production or bulb storage life. FBR caused by Fusarium species is among the most destructive onion diseases. In this study, we identified Fusarium species associated with FBR in Jeolla and Gyeongsang Provinces in South Korea and evaluated fungicides against the pathogens. Our morphological and molecular analyses showed that FBR in onions is associated with Fusarium commune, Fusarium oxysporum, and Fusarium proliferatum. We selected seven fungicides (fludioxonil, hexaconazole, mandestrobin, penthiopyrad, prochloraz-manganese, pydiflumetofen, and tebuconazole) and evaluated their inhibitory effects on mycelial growth of the pathogens at three different concentrations (0.01, 0.1, and 1 mg/mL). We found that prochloraz-manganese was highly effective, inhibiting 100% of the mycelial growth of the pathogens at all concentrations, followed by tebuconazole. Fludioxonil showed < 50% inhibition at 1 mg/mL for the tested isolates.

Keywords

Acknowledgement

This work was carried out with the support of the "Cooperative Research Program for Agriculture Science & Technology Development (Project No. PJ01667601), and supported by (2023) the RDA Fellowship Program of the National Institute of Horticultural & Herbal Science, Rural Development Administration, Republic of Korea.

References

  1. Sengupta A, Ghosh S, Bhattacharjee S. Allium vegetables in cancer prevention: an overview. Asian Pac. J. Cancer Prev. 2004;5:237-245. 
  2. Degani O, Kalman B. Assessment of commercial fungicides against onion (Allium cepa) basal rot disease caused by Fusarium oxysporum f. sp. cepae and Fusarium acutatum. JoF. 2021;7(3):235. doi: 10.3390/jof7030235. 
  3. Roldan-Marin E, Krath BN, Poulsen M, et al. Effects of an onion by-product on bioactivity and safety markers in healthy rats. Br J Nutr. 2009;102(11):1574-1582. doi: 10.1017/S0007114509990870. 
  4. Shabir I, Pandey VK, Dar AH, et al. Nutritional profile, phytochemical compounds, biological activities, and utilisation of onion peel for food applications: a review. Sustainability. 2022;14(19):11958. doi: 10.3390/su141911958. 
  5. Slimestad R, Fossen T, Vagen IM. Onions: a source of unique dietary flavonoids. J Agric Food Chem. 2007;55(25):10067-10080. doi: 10.1021/jf0712503. 
  6. Food and Agriculture Organization of the United Nations (FAO). 2019. Onion Production. https://www.fao.org/faostat/en/. 
  7. Choi O, Kang B, Lee Y, et al. First report of root rot on onion (Allium cepa) seedlings caused by Globisporangium irregulare in South Korea. Can. J. Plant Pathol. 2022;45(2):110-117.  https://doi.org/10.1080/07060661.2022.2142299
  8. Statistics Korea (KOSTAT). Production of Barley, Garlic and Onions in 2021; 2021. http://kostat.go.kr/portal/eng/pressReleases/. 
  9. Mishra RK, Jaiswal RK, Kumar D, et al. Management of major diseases and insect pests of onion and garlic: a comprehensive review. J Plant Breed Crop Sci. 2014;6(11):160-170. doi: 10.5897/JPBCS2014.0467. 
  10. Ji SH, Kim TK, Keum YS, et al. The major postharvest disease of onion and its control with thymol fumigation during low-temperature storage. Mycobiology. 2018;46(3):242-253. doi: 10.1080/12298093.2018.1505245. 
  11. Jung JH, Kim SW, Min JS, et al. The effect of nano-silver liquid against the white rot of the green onion caused by Sclerotium cepivorum. Mycobiology. 2010;38(1):39-45. doi: 10.4489/MYCO.2010.38.1.039. 
  12. Kalman B, Abraham D, Graph S, et al. Isolation and identification of Fusarium spp., the causal agents of onion (Allium cepa) basal rot in northeastern Israel. Biology. 2020;9:69. doi: 10.3390/biology9040069. 
  13. Kamal AEA, Mohamed HM, Aly AA, et al. Enhanced onion resistance against Stemphylium leaf blight disease, caused by Stemphylium vesicarium, by di-potassium phosphate and benzothiadiazole treatments. Plant Pathol. J. 2008;24(2):171-177. doi: 10.5423/PPJ.2008.24.2.171. 
  14. Kumar V, Neeraj SS, Sagar NA. Post harvest management of fungal diseases in onion-a review. Int J Curr Microbiol. Appl. Sci. 2015;4:737-752. 
  15. Mohammed A, Shiberu T, Thangavel S. White rot (Sclerotium cepivorum berk)-an aggressive pest of onion and garlic in Ethiopia: an overview. J Agric Biotech Sustain Dev. 2014;6(1):6-15. doi: 10.5897/JABSD2013.0210. 
  16. Oh JY, Kim KD. Control strategies for fungal pathogens on stored onion (Allium cepa) and garlic (Allium sativum): a review. Life Sci. Nat. Resour. Res. 2016;24:31-40. 
  17. Park S, Lee D, Chung H, et al. Gray mold neck rot of onion caused by Botrytis allii in Korea. Plant Pathol. J. 1995;11(4):348-352. 
  18. Sang MK, Han GD, Oh JY, et al. Penicillium brasilianum as a novel pathogen of onion (Allium cepa L.) and other fungi predominant on market onion in Korea. Crop Prot. 2014;65:138-142. doi: 10.1016/j.cropro.2014.07.016. 
  19. Back CG, Hwang SK, Kwon YS, et al. Phylogenetic analysis of downy mildew caused by Peronospora destructor and a method of detection by PCR. Kor J Mycol. 2017;45:386-393. 
  20. Lacy ML, Roberts DL. Yields of onion cultivars in Midwestern organic soils infested with Fusarium oxysporum f. sp. cepae and Pyrenochaeta terrestris. Plant Dis. 1982;66(1):1003-1006. doi: 10.1094/PD66-1003. 
  21. Cramer CS. Breeding and genetics of Fusarium basal rot resistance in onion. Euphytica. 2000;115(3):159-166. doi: 10.1023/A:1004071907642. 
  22. Southwood MJ, Viljoen A, McLeod A. Inoculum sources of Fusarium oxysporum f. sp. cepae on onion in the Western Cape province of South Africa. Crop Prot. 2015;75:88-95. doi: 10.1016/j.cropro.2015.05.014. 
  23. Saxena A, Cramer CS. Screening of onion seedlings for resistance against New Mexico isolates of Fusarium oxysporum f. sp. cepae. J. Plant Pathol. 2009;91:199-202. 
  24. Galvan GA, Koning-Boucoiran CF, Koopman WJ, et al. Genetic variation among Fusarium isolates from onion, and resistance to Fusarium basal rot in related Allium species. Eur J Plant Pathol. 2008;121(4):499-512. doi: 10.1007/s10658-008-9270-9. 
  25. Ghanbarzadeh B, Mohammadi Goltapeh E, Safaie N. Identification of Fusarium species causing basal rot of onion in East Azarbaijan province, Iran and evaluation of their virulence on onion bulbs and seedlings. Arch. Phytopathol. Plant Prot. 2014;47(9):1050-1062. doi: 10.1080/03235408.2013.829628. 
  26. Haapalainen M, Latvala S, Kuivainen E, et al. Fusarium oxysporum, F. proliferatum and F. redolens associated with basal rot of onion in Finland. Plant Pathol. 2016;65(8):1310-1320. doi: 10.1111/ppa.12521. 
  27. Taylor A, Vagany V, Jackson AC, et al. Identification of pathogenicity-related genes in Fusarium oxysporum f. sp. cepae. Mol Plant Pathol. 2016;17(7):1032-1047. doi: 10.1111/mpp.12346. 
  28. Le D, Audenaert K, Haesaert G. Fusarium basal rot: profile of an increasingly important disease in Allium spp. Trop Plant Pathol. 2021;46(3):241-253. doi: 10.1007/s40858-021-00421-9. 
  29. Nelson PE, Toussoun TA, Marasas WFO. Fusarium species: an illustrated manual for identification. University Park: Penn. State University Press; 1983. 
  30. Alves A, Crous PW, Correia A, et al. Morphological and molecular data reveal cryptic speciation in Lasiodiplodia theobromae. Fungal Divers. 2008;28:1-13. 
  31. Carbone I, Kohn LM. A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia. 1999;91(3):553-556. doi: 10.2307/3761358. 
  32. Tamura K, Peterson D, Peterson N, et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011;28(10):2731-2739. doi: 10.1093/molbev/msr121. 
  33. Thompson JD, Gibson TJ, Plewniak F, et al. The CLUSTAL_X Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997;25(24):4876-4882. doi: 10.1093/nar/25.24.4876. 
  34. Torres-Cruz TJ, Whitaker BK, Proctor RH, et al. FUSARIUM-ID v. 3.0: an updated, downloadable resource for Fusarium species identification. Plant Dis. 2022;106(6):1610-1616. doi: 10.1094/PDIS-09-21-2105-SR. 
  35. Crous PW, Lombard L, Sandoval-Denis M, et al. Fusarium: more than a node or a foot-shaped basal cell. Stud Mycol. 2021;98:100116. doi: 10.1016/j.simyco.2021.100116. 
  36. O'Donnell K, Whitaker BK, Laraba I, et al. DNA sequence-based identification of Fusarium: a work in progress. Plant Dis. 2022;106(6):1597-1609. doi: 10.1094/PDIS-09-21-2035-SR. 
  37. Skovgaard K, Rosendahl S, O'Donnell K, et al. Fusarium commune is a new species identified by morphological and molecular phylogenetic data. Mycologia. 2003;95(4):630-636. doi: 10.2307/3761939. 
  38. Husna A, Zakaria L, Mohamed Nor NM. Fusarium commune associated with wilt and root rot disease in rice. Plant Pathol. 2021;70(1):123-132. doi: 10.1111/ppa.13270. 
  39. Summerbell RC, Richardson SE, Kane J. Fusarium proliferatum as an agent of disseminated infection in an immunosuppressed patient. J Clin Microbiol. 1988;26(1):82-87. doi: 10.1128/jcm.26.1.82-87.1988. 
  40. Karabulut E, G€okc,e AF. Determination of resistance levels of some onion cultivars or inbreed lines with S testing at seedling stage. HortiS. 2022;39(1):1-7. doi: 10.16882/hortis.1065731. 
  41. Yin Y, Liu X, Li B, et al. Characterization of sterol demethylation inhibitor-resistant isolates of Fusarium asiaticum and F. graminearum collected from wheat in China. Phytopathology. 2009;99(5):487-497. doi: 10.1094/PHYTO-99-5-0487. 
  42. Degani O, Dimant E, Gordani A, et al. Prevention and control of Fusarium spp., the causal agents of onion (Allium cepa) basal rot. Horticulturae. 2022;8(11):1071. doi: 10.3390/horticulturae8111071. 
  43. Ozer N, K € oyc € u ND. Evaluation of seed treatments for controlling Aspergillus niger and Fusarium oxysporum on onion seed. Phytopathol. Mediterr. 1998;37:33-40. 
  44. Gehmann K, Nyfeler R, Leadbeater AJ, et al. CGA 173506: a new phenylpyrrole fungicide for broad-spectrum disease control. Brighton Crop Protection Conference, Pests and Diseases. British Crop Protection Council. 1990;2:399-406. 
  45. Li X, Fernandez-Ortuno D, Grabke A, et al. Resistance to fludioxonil in Botrytis cinerea isolates from blackberry and strawberry. Phytopathology. 2014;104(7):724-732. doi: 10.1094/PHYTO-11-13-0308-R. 
  46. Aoki T, O'Donnell K. Morphological and molecular characterization of Fusarium pseudograminearum sp. nov., formerly recognized as the group 1 population of F. graminearum. Mycologia. 1999;91(4):597-609. doi: 10.2307/3761245. 
  47. O'Donnell K, Cigelnik E, Nirenberg HI. Molecular systematics and phylogeography of the Gibberella fujikuroi species complex. Mycologia. 1998;90(3):465-493. doi: 10.2307/3761407.