DOI QR코드

DOI QR Code

Isolation and Characterization of Xylanase from a Novel Strain, Penicillium menonorum SP10

  • Thi Thu Huong Luong (Department of Biology, School of Science, King Mongkut's Institute of Technology Ladkrabang (KMITL)) ;
  • Supattra Poeaim (Department of Biology, School of Science, King Mongkut's Institute of Technology Ladkrabang (KMITL)) ;
  • Narumon Tangthirasunun (Department of Biology, School of Science, King Mongkut's Institute of Technology Ladkrabang (KMITL))
  • Received : 2023.05.01
  • Accepted : 2023.07.29
  • Published : 2023.08.31

Abstract

Xylanase has been applied in various sectors, such as biomass conversion, paper, pulp, textiles, and pharmaceutical industries. This study aimed to isolate and screen potential xylanase-producing fungi from the soil of Suphan Buri Province, Thailand. Fifteen fungi were isolated, and their xylanase activities were tested by the qualitative method. The result showed that isolate SP3, SP10 and SP15 gave high xylanase activity with potency index (PI) of 2.32, 2.01 and 1.82, respectively. These fungi were selected for the xylanase quantitative test, isolate SP10 performed the highest xylanase activity with 0.535 U/mL. Through molecular methods using the 𝛽-tubulin gene, isolate SP10 was identified as Penicillium menonorum. The xylanase characteristics from P. menonorum SP10 were determined, including the xylanase isoforms and the optimum pH and temperature. The xylanase isoforms on SDS-PAGE indicated that P. menonorum SP10 produced two xylanases (45 and 54 kDa). Moreover, its xylanase worked optimally at pH 6 and 55 ℃ while reaching 61% activity at 65 ℃. These results proposed P. menonorum SP10 as a good candidate for industrial uses, especially in poultry feed and pulp industries, to improve yield and economic efficiency under slightly acidic and high-temperature conditions.

Keywords

Acknowledgement

The authors thank King Mongkut's Institute of Technology Ladkrabang for financial support (grant no. KDS2020/048).

References

  1. Dashtban M, Schraft H, Qin W. Fungal bioconversion of lignocellulosic residues; opportunities & perspectives. Int J Biol Sci. 2009;5(6):578-595. doi: 10.7150/ijbs.5.578. 
  2. Mendez-Liter JA, de Eugenio LI, Nieto-Dominguez M, et al. Hemicellulases from Penicillium and Talaromyces for lignocellulosic biomass valorization: a review. Bioresour Technol. 2021;324:124623. doi: 10.1016/j.biortech.2020.124623. 
  3. Ubando AT, Felix CB, Chen W-H. Review biorefineries in circular bioeconomy: a comprehensive review. Bioresour Technol. 2020;299:122585. doi: 10.1016/j.biortech.2019.122585. 
  4. Saldarriaga-Hernandez S, Velasco-Ayala C, LealIsla Flores P, et al. Biotransformation of lignocellulosic biomass into industrially relevant products with the aid of fungi-derived lignocellulolytic enzymes. Int J Biol Macromol. 2020;161:1099-1116. doi: 10.1016/j.ijbiomac.2020.06.047. 
  5. Debnath R, Saha T. An insight into the production strategies and applications of the ligninolytic enzyme laccase from bacteria and fungi. Biocatal Agric Biotechnol. 2020;26:101645. doi: 10.1016/j.bcab.2020.101645. 
  6. Chadha BS, Kaur B, Basotra N, et al. Thermostable xylanases from thermophilic fungi and bacteria: current perspective. Bioresour Technol. 2019;277:195-203. doi: 10.1016/j.biortech.2019.01.044. 
  7. Bhardwaj N, Kumar B, Verma P. A detailed overview of xylanases: an emerging biomolecule for current and future prospective. Bioresour Bioprocess. 2019;6:40. doi: 10.1186/s40643-019-0276-2. 
  8. Dhaver P, Pletschke B, Sithole B, et al. Isolation, screening, preliminary optimisation and characterisation of thermostable xylanase production under submerged fermentation by fungi in durban, South Africa. Mycology. 2022;13(4):271-292. doi: 10.1080/21501203.2022.2079745. 
  9. Gaspar A, Cosson T, Roques C, et al. Study on the production of a xylanolytic complex from Penicillium canescens 10-10c. Appl Biochem Biotechnol. 1997;67(1-2):45-58. doi: 10.1007/bf02787840. 
  10. Neethu K, Rubeena M, Sajith S, et al. A novel strain of Trichoderma viride shows complete lignocellulolytic activities. ABB. 2012;03(08):1160-1166. doi: 10.4236/abb.2012.38142.
  11. Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 1959;31(3):426-428. doi: 10.1021/ac60147a030. 
  12. Tangthirasunun N, Poeaim S. Studies on the rapid and simple DNA extraction method, antibacterial activity and enzyme activity involved in plant biomass conversion by Cookeina sulcipes and C. tricholoma (cup fungi). J Pure Appl Microbiol. 2022;16(4):2851-2863. doi: 10.22207/JPAM.16.4.58. 
  13. O'Donnell K, Cigelnik E. Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Mol Phylogenet Evol. 1997;7(1):103-116. doi: 10.1006/mpev.1996.0376. 
  14. Tangthirasunun N, Silar P, Bhat DJ, et al. Morphology and phylogeny of Pseudorobillarda eucalypti sp. nov., from Thailand. Phytotaxa. 2014;176(1):251-259. doi: 10.11646/phytotaxa.176.1.24. 
  15. Cano-Ramirez C, Santiago-Hernandez A, Rivera-Orduna FN, et al. One-step zymogram method for the simultaneous detection of cellulase/xylanase activity and molecular weight estimation of the enzyme. Electrophoresis. 2017;38(3-4):447-451. doi: 10.1002/elps.201600347. 
  16. Lawrence AM, Besir H. Staining of proteins in gels with coomassie G-250 without organic solvent and acetic acid. J Vis Exp. 2009;30:1350. doi: 10.3791/1350. 
  17. Prajapati BP, Suryawanshi RK, Agrawal S, et al. Characterization of cellulase from Aspergillus tubingensis NKBP-55 for generation of fermentable sugars from agricultural residues. Bioresour Technol. 2018;250:733-740. doi: 10.1016/j.biortech.2017.11.099. 
  18. Bittencourt JWF, Arfelli VC, Lunkes JC, et al. Biochemical characteristics of Penicillium crustosum FP 11 xylanase II and an assessment of the properties of xylanases produced by the genus penicillium. ARRB. 2020;35:64-75. doi: 10.9734/arrb/2020/v35i730248. 
  19. Terrasan CRF, Guisan JM, Carmona EC. Xylanase and b-xylosidase from Penicillium janczewskii: purification, characterization and hydrolysis of substrates. Electron J Biotechnol. 2016;23:54-62. doi: 10.1016/j.ejbt.2016.08.001. 
  20. Lin C, Shen Z, Zhu T, et al. Newly isolated Penicillium ramulosum N1 is excellent for producing protease-resistant acidophilic xylanase. J Mol Microbiol Biotechnol. 2015;25(5):320-326. doi: 10.1159/000439170. 
  21. Lee KC, Arai T, Ibrahim D, et al. Purification and characterization of a xylanase from the newly isolated Penicillium rolfsii c3-2(1) IBRL. Bioresources. 2015;10(1):1627-1643. doi: 10.15376/biores.10.1.1627-1643. 
  22. de Castro AMH, de Albuquerque de Carvalho ML, Leite SGF, et al. Cellulases from Penicillium funiculosum: production, properties and application to cellulose hydrolysis. J Ind Microbiol Biotechnol. 2010;37(2):151-158. doi: 10.1007/s10295-009-0656-2. 
  23. Knob A, Carmona EC. Xylanase production by Penicillium sclerotiorum and its characterization. World Appl Sci J. 2008;4:277-283. 
  24. Dutta T, Sengupta R, Sahoo R, et al. A novel cellulase free alkaliphilic xylanase from alkali tolerant Penicillium citrinum: production, purification and characterization. Lett Appl Microbiol. 2007;44(2):206-211. doi: 10.1111/j.1472-765x.2006.02042.x. 
  25. Tanaka H, Nakamura T, Hayashi S, et al. Purification and properties of an extracellular endo1,4-b-xylanase from Penicillium citrinum and characterization of the encoding gene. J Biosci Bioeng. 2005;100(6):623-630. doi: 10.1263/jbb.100.623. 
  26. Haas H, Herfurth E, Stoffler G, et al. Purification, characterization and partial amino acid sequences of a xylanase produced by Penicillium chrysogenum. Biochim Biophys Acta. 1992;1117(3):279-286. doi: 10.1016/0304-4165(92)90025-p. 
  27. Peterson SW, Orchard SS, Menon S. Penicillium menonorum, a new species related to P. pimiteouiense. IMA Fungus. 2011;2(2):121-125. doi: 10.5598/imafungus.2011.02.02.02. 
  28. Liao H, Zheng H, Li S, et al. Functional diversity and properties of multiple xylanases from Penicillium oxalicum GZ-2. Sci Rep. 2015;5:12631. doi: 10.1038/srep12631. 
  29. Amore A, Giacobbe S, Faraco V. Regulation of cellulase and hemicellulase gene expression in fungi. Curr Genomics. 2013;14(4):230-249. doi: 10.2174/1389202911314040002. 
  30. Hou YH, Wang TH, Long H, et al. Novel cold-adaptive Penicillium strain FS010 secreting thermo-labile xylanase isolated from yellow sea. Acta Biochim Biophys Sin (Shanghai). 2006;38(2):142-149. doi: 10.1111/j.1745-7270.2006.00135.x. 
  31. Knob A, Carmona EC. Purification and characterization of two extracellular xylanases from Penicillium sclerotiorum: a novel acidophilic xylanase. Appl Biochem Biotechnol. 2010;162(2):429-443. doi: 10.1007/s12010-009-8731-8.