DOI QR코드

DOI QR Code

Morphology, Molecular Phylogeny, and Fungicide Sensitivity of Phytophthora nagaii and P. tentaculata in Korea

  • Seung Hyun Lee (Department of Biological Science, Kunsan National University) ;
  • Bora Nam (Department of Biological Science, Kunsan National University) ;
  • Dong Jae Lee (Department of Biological Science, Kunsan National University) ;
  • Young-Joon Choi (Department of Biological Science, Kunsan National University)
  • Received : 2023.08.21
  • Accepted : 2023.09.18
  • Published : 2023.10.31

Abstract

Phytophthora species, classified under Oomycota, cause significant damage to various crops and trees. The present study introduced Phytophthora species, P. nagaii and P. tentaculata, new to Korea, which pose notable risks to their respective host plants. Our research provided a comprehensive description of these species taking into account their cultural features, morphological characteristics, and molecular phylogenetic analysis using the internal transcribed spacer rDNA region and cytochrome c oxidase subunit mtDNA genes (cox1 and cox2) sequences. In addition, this study first evaluated the sensitivity of P. nagaii and P. tentaculata to five anti-oomycete fungicides, finding both species most responsive to picarbutrazox and P. tentaculata resistant to fluazinam. The data can guide targeted treatment strategies and offer insights into effective control methods. The findings expand our understanding of the diversity, distribution, and management of Phytophthora species in Korea.

Keywords

References

  1. Abad ZG, Burgess TI, Redford AJ, et al. IDphy: an international online resource for molecular and morphological identification of Phytophthora. Plant Dis. 2023;107(4):987-998. doi: 10.1094/PDIS02-22-0448-FE.
  2. Erwin DC, Ribeiro OK. Phytophthora diseases worldwide. St. Paul, Minnesota, USA: American Phytopathological Society; 1996.
  3. Kroon LP, Brouwer H, de Cock AW, et al. The genus Phytophthora anno 2012. Phytopathology. 2012;102(4):348-364. doi: 10.1094/PHYTO-01-11-0025.
  4. Balci Y, Bienapfl JC. Phytophthora in US forests. In: Lamour K, editor. Phytophthora: a global perspective. Boston: CABI Wallingford UK; 2013. p. 135-145.
  5. Parke JL, Knaus BJ, Fieland VJ, et al. Phytophthora community structure analyses in Oregon nurseries inform systems approaches to disease management. Phytopathology. 2014;104(10):1052-1062. doi: 10.1094/PHYTO-01-14-0014-R.
  6. Brasier C, Brown A. Infection of tree stems by zoospores of Phytophthora ramorum and P. kernoviae. In: Frankel SJK, Palmieri JT, Katharine M, editors. Proceedings of the sudden oak death third science symposium. Albany (CA): Department of Agriculture, Forest Service, Pacific Southwest Research Station; 2008. p. 167-168.
  7. Von Broembsen S, Brits G. Evaluation of the resistance of pincushion (Leucospermum spp.) breeding lines to root rot caused by Phytophthora cinnamomi. Acta Hortic. 1990;(264):115-122. doi: 10.17660/ActaHortic.1990.264.14.
  8. Goss EM, Larsen M, Chastagner GA, et al. Population genetic analysis infers migration pathways of Phytophthora ramorum in US nurseries. PLoS Pathog. 2009;5(9):e1000583. doi: 10.1371/journal.ppat.1000583.
  9. Hansen EM. Alien Forest pathogens: Phytophthora species are changing world forests. Boreal Environ Res. 2008;13:33-41.
  10. Hansen EM. Phytophthora species emerging as pathogens of Forest trees. Curr Forestry Rep. 2015; 1(1):16-24. doi: 10.1007/s40725-015-0007-7.
  11. Rizzo D, Garbelotto M, Davidson J, et al. Phytophthora ramorum as the cause of extensive mortality of Quercus spp. and Lithocarpus densiflorus in California. Plant Dis. 2002;86(3):205-214. doi: 10.1094/PDIS.2002.86.3.205.
  12. Hyun I-H, Choi W. Phytophthora species, new threats to the plant health in Korea. Plant Pathol J. 2014;30(4):331-342. doi: 10.5423/PPJ.RW.07.2014.0068.
  13. KSPP. List of plant disease in Korea. Korea: Korean Society of Plant Pathology; 2022.
  14. Jee H, Kim W, Lee S, et al. Phytophthora cryptogea causing the foot rot of Gerbera jamesonii in Korea. Korean J Plant Pathol. 1996;12:374-376.
  15. Jee H-J, Kim W-G, Cho W-D. First report of Phytophthora palmivora isolated from areca palm and soil in Korea. Plant Pathol. J. 1997;13:438-441.
  16. Kyoung-Yul R. Stem rot of lily (Lilium L.) caused by Phytophthora cactorum in Korea. Korean J Plant Pathol. 1998;14:458-462.
  17. Jee H-J, Kim W-G, Cho W-D. Phytophthora root rot of Chinese cabbage and spinach caused by P. drechsleri in Korea. Plant Pathol J. 1999;15:28-33.
  18. Ryu K-Y, Kim J-S, Kim J-T, et al. First report of pink rot of potato (Solanum tuberosum) caused by Phytophthora erythroseptica in Korea. Res Plant Dis. 2003;9(1):32-35. doi: 10.5423/RPD.2003.9.1.032.
  19. Oh E, Lee S, Kim K, et al. First report of chestnut ink disease by Phytophthora katsurae on chestnut in Korea. Plant Dis. 2008;92(2):312-312. doi: 10.1094/PDIS-92-2-0312A.
  20. Lee J-K, Jo J-W, Shin K-C, et al. Isolation, identification and characterization of Phytophthora katsurae, causing chestnut ink disease in Korea. Plant Pathol J. 2009;25(2):121-127. doi: 10.5423/PPJ.2009.25.2.121.
  21. Kim B-S, Wai KPP, Siddique MI, et al. First report of Phytophthora leaf blight and vine rot of kudzu (Pueraria lobata) in Korea. Res Plant Dis. 2020; 26(2):109-115. doi: 10.5423/RPD.2020.26.2.109.
  22. Jee H-J, Cho W-D, Kim W-G. Phytophthora diseases of apple in Korea: II. Occurrence of an unusual fruit rot caused by P. cactorum and P. cambivora. Plant Pathol J. 1997;13:145-151.
  23. Lee Y-H, Jee H-J, Cha K-H, et al. Occurrence of Phytophthora root rot on kiwifruit in Korea. Plant Pathol J. 2001;17:154-158.
  24. Jee H-J, Cho W-D, Kim C-H. Phytophthora diseases in Korea. Suwon, Korea: National Institute of Agricultural Science and Technology; 2000.
  25. Seo M-W, Song J-Y, Kim H-G. Multi-locus phylogeny analysis of Korean isolates of Phytophthora species based on sequence of ribosomal and mitochondrial DNA. Kor J Mycol. 2010;38(1):40-47. doi: 10.4489/KJM.2010.38.1.040.
  26. Nam B, Lee HJ, Choi Y-J. Organic farming allows balanced fungal and oomycetes communities. Microorganisms. 2023;11(5):1307. doi: 10.3390/microorganisms11051307.
  27. Nam B, Lee D-J, Choi Y-J. High-temperature-tolerant fungus and oomycetes in Korea, including Saksenaea longicolla sp. nov. Mycobiology. 2021;49(5):476-490. doi: 10.1080/12298093.2021.1985698.
  28. Han Y-K, Back C-G, Park M-J, et al. Control effects of fungicides against Fusarium wilt on watermelon and crown and foot rot on cucumber. KJPS. 2021;25(4):343-352. doi: 10.7585/kjps.2021.25.4.343.
  29. Jung S-K, Kim H-M, Ko J-A, et al. Chemical control of ivy stem rot disease. J Agric Life Sci. 2012; 43:28-31.
  30. Kim B-S, Ahn J-W. Identification and fungicide responses of Phytophthora cactorum isolated from lily growing daekwallyong alpine area. Korean J Pest Sci. 2002;6:42-44.
  31. Kim D-S, Prak H-C, Chun S-J, et al. Field performance of a new fungicide ethaboxam against cucumber downy mildew, potato late blight and pepper Phytophthora blight in Korea. Plant Pathol J. 1999;15:48-52.
  32. Kim DS, Chun SJ, Jeon JJ, et al. Synthesis and fungicidal activity of ethaboxam against oomycetes. Pest Manag Sci. 2004;60(10):1007-1012. doi: 10.1002/ps.873.
  33. Kim J-S, Lee Y-G, Kwon M, et al. Mating types of Phytophthora infestans isolates and their responses to metalaxyl and dimethomorph in Korea. Res Plant Dis 2014;20(1):25-30. doi: 10.5423/RPD.2014.20.1.025.
  34. Lee S-M, Shin J-H, Kim S-B, et al. Characteristics of Phytophthora capsici causing pepper Phytophthora blight resistant to metalaxyl. Korean J Pest Sci. 2009;13:283-289.
  35. Shin J-H, Kim J-Y, Kim H-J, et al. Control efficacy of carboxylic acid amide fungicides against pepper Phytophthora blight causing Phytophthora capsici. Korean J Pest Sci. 2010;14:463-472.
  36. Zhang XZ, Ryu KY, Kim JS, et al. Changes in the sensitivity to metalaxyl, dimethomorph and ethaboxam of Phytophthora infestans in Korea. Plant Pathol J. 2005;21(1):33-38. doi: 10.5423/PPJ.2005.21.1.033.
  37. Tomlin C. The pesticide manual: a world compendium. United Kingdom: British Crop Protection Council; 2006.
  38. Davidse LC, Hofman AE, Velthuis GC. Specific interference of metalaxyl with endogenous RNA polymerase activity in isolated nuclei from Phytophthora megasperma f. sp. medicaginis. Exp Mycol. 1983;7(4):344-361. doi: 10.1016/0147-5975(83)90019-1.
  39. Uchida M, Roberson RW, Chun SJ, et al. In vivo effects of the fungicide ethaboxam on microtubule integrity in Phytophthora infestans. Pest Manag Sci. 2005;61(8):787-792. doi: 10.1002/ps.1045.
  40. Anema B, Bouwman J, Komyoji T, et al. Fluazinam: a novel fungicide for use against Phytophthora infestans in potatoes. Farnham (UK): British Crop Protection Council; 1992. p. 663-668.
  41. Komyoji T, Sugimoto K, Suzuki K. Effect of fluazinam, a new fungicide, on infection processes of several plant pathogenic fungi. Jpn J Phytopathol. 1995;61(2):145-149. doi: 10.3186/jjphytopath.61.145.
  42. Tucker R, Leaper D, Laidler S, editors. Fluazinam-control of potato late blight-UK experience 1992-3. Proceedings of the Brighton Crop Protection Conference - Pests and Diseases; Brighton, England; 1994.
  43. Davidse L, Looijen D, Turkensteen L. Van der Wal D. Occurrence of metalaxyl-resistant ttrains of Phytophthora infestans in Dutch potato fields. Eur J Plant Pathol. 1981;87:65-68. https://doi.org/10.1007/BF01976658
  44. Dowley L, O'sullivan E. Metalaxyl-resistant strains of Phytophthora infestans (Mont.) de bary in Ireland. Potato Res. 1981;24(4):417-421. doi: 10.1007/BF02357324.
  45. Feng X, Baudoin A. First report of carboxylic acid amide fungicide resistance in Plasmopara viticola (grapevine downy mildew) in North America. Plant Health Prog. 2018;19(2):139-139. doi: 10.1094/PHP-01-18-0005-BR.
  46. Waterhouse G. Key to Pythium pringsheim. Commonwealth Mycol Inst Mycol Pap. 1967;109:1-15.
  47. Rahman MZ, Uematsu S, Takeuchi T, et al. Two new species, Phytophthora nagaii sp. nov. and P. fragariaefolia sp. nov., causing serious diseases on rose and strawberry plants, respectively, in Japan. J Gen Plant Pathol. 2014;80(4):348-365. doi: 10.1007/s10327-014-0519-1.
  48. White TJ, Bruns T, Lee S, et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, editors. PCR protocols: a guide to methods and applications. New York: Academic Press; 1990. p. 315-322.
  49. Robideau GP, De Cock AW, Coffey MD, et al. DNA barcoding of oomycetes with cytochrome c oxidase subunit I and internal transcribed spacer. Mol Ecol Resour. 2011;11(6):1002-1011. doi: 10.1111/j.1755-0998.2011.03041.x.
  50. Hudspeth DS, Nadler SA, Hudspeth ME. A COX2 molecular phylogeny of the peronosporomycetes. Mycologia. 2000;92(4):674-684. doi: 10.1080/00275514.2000.12061208.
  51. Choi Y-J, Beakes G, Glockling S, et al. Towards a universal barcode of oomycetes-a comparison of the cox1 and cox2 loci. Mol Ecol Resour. 2015;15(6):1275-1288. doi: 10.1111/1755-0998.12398.
  52. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30(4):772-780. doi: 10.1093/molbev/mst010.
  53. Adaskaveg JE, Hao W, Forster € H. Postharvest strategies for managing Phytophthora brown rot of citrus using potassium phosphite in combination with heat treatments. Plant Dis. 2015;99:1477-1482. doi: 10.1094/PDIS-01-15-0040-RE.
  54. Krober € H, Marwitz R. Phytophthora tentaculata sp. nov. and Phytophthora cinnamomi var. parvispora var. nov., zwei neue Pilze von Zierpflanzen in Deutschland. Z Pflanzenkr Pflanzenschutz. 1993;100:250-258.
  55. Matheron M, Porchas M. Impact of azoxystrobin, dimethomorph, fluazinam, fosetyl-Al, and metalaxyl on growth, sporulation, and zoospore cyst germination of three Phytophthora spp. Plant Dis. 2000;84(4):454-458. doi: 10.1094/PDIS.2000.84.4.454.
  56. Parra G, Ristaino JB. Resistance to mefenoxam and metalaxyl among field isolates of Phytophthora capsici causing Phytophthora blight of bell pepper. Plant Dis. 2001;85(10):1069-1075. doi: 10.1094/PDIS.2001.85.10.1069.
  57. Ali A, Kumar R, Mazakova J, et al. Evaluation of the ability of seven active ingredients of fungicides to suppress Phytophthora cactorum at diverse life stages, and variability in resistance found among isolates. JoF. 2022;8(10):1039. doi: 10.3390/jof8101039.
  58. McCoy AG, Noel ZA, Jacobs JL, et al. Phytophthora sojae pathotype distribution and fungicide sensitivity in Michigan. Plant Dis. 2022;106(2):425-431. doi: 10.1094/PDIS-03-21-0443-RE.
  59. Thurston AM, Waller L, Condron L, et al. Sensitivity of the soil-borne pathogen Phytophthora agathidicida, the causal agent of kauri dieback, to the anti-oomycete fungicides ethaboxam, fluopicolide, mandipropamid, and oxathiapiprolin. N Z Plant Prot. 2022;75:14-18. https://doi.org/10.30843/nzpp.2022.75.11751
  60. Rekanovic E, Potocnik I, Milijasevic-Marcic S, et al. Sensitivity of Phytophthora infestans (Mont.) de bary isolates to fluazinam, fosetyl-Al and propamocarb-hydrochloride. Pestic Fitomed. 2011;26:111-116. https://doi.org/10.2298/PIF1102111R
  61. Nagai Y, Takeuchi T, Watanabe T. A stem blight of rose caused by Phytophthora megasperma. Phytopathology. 1978;68(5):684-688. doi: 10.1094/Phyto-68-684.
  62. Sims LL, Garbelotto M. Susceptibility to the rare Phytophthora tentaculata and to the widespread Phytophthora cactorum is consistent with host ecology and history. For Pathol. 2018;48:e12446.
  63. Sullivan M, Bulluck R. Phytophthora species in the environment and nursery settings. USA: United States Department of Agriculture; 2010.
  64. Rooney-Latham S, Blomquist C. First report of root and stem rot caused by Phytophthora tentaculata on Mimulus aurantiacus in North America. Plant Dis. 2014;98(7):996-996. doi: 10.1094/PDIS09-13-1002-PDN.
  65. Moralejo E, Perez-Sierra AM, Alvarez L, et al. Multiple alien Phytophthora taxa discovered on diseased ornamental plants in Spain. Plant Pathol. 2009;58(1):100-110. doi: 10.1111/j.1365-3059.2008.01930.x.
  66. Alvarez L, Perez-Sierra A, Leon M, et al. Lavender cotton root rot: a new host of Phytophthora tentaculata found in Spain. Plant Dis. 2006;90(4):523-523. doi: 10.1094/PD-90-0523A.
  67. Martini P, Pane A, Raudino F, et al. First report of Phytophthora tentaculata causing root and stem rot of oregano in Italy. Plant Dis. 2009;93(8):843-843. doi: 10.1094/PDIS-93-8-0843B.
  68. Meng J, Wang Y. First report of stalk rot caused by Phytophthora tentaculata on Aucklandia lappa in China. Plant Dis. 2008;92(9):1365-1365. doi: 10.1094/PDIS-92-9-1365B.