DOI QR코드

DOI QR Code

Phylogenetic Relationships of the Mutualistic Fungi Associated with Macrotermes subhyalinus in Oman

  • Hilal S. AlShamakhi (Royal Court Affairs, Royal Estates Affairs) ;
  • Abdullah M. Al-Sadi (Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University) ;
  • Lyn G. Cook (School of Biological Sciences, The University of Queensland)
  • Received : 2020.10.21
  • Accepted : 2023.09.11
  • Published : 2023.10.31

Abstract

The symbiotic association between fungus-gardening termites Macrotermes and its fungal symbiont has a moderate degree of specificity-although the symbiotic fungi (Termitomyces) form a monophyletic clade, there is not a one-to-one association between termite species and their fungus-garden associates. Here, we aim to determine the origin and phylogenetic relationships of Termitomyces in Oman. We used sequences of the internal transcribed spacer region (ITS) and the nuclear large subunit ribosomal RNA (LSU rRNA, 25S) gene and analyzed these with sequences of Termitomyces from other geographic areas. We find no evidence for more than a single colonization of Oman by Termitomyces. Unexpectedly, we find Termitomyces in Oman is most closely related to the symbiont of M. subhyalinus in West Africa rather than to those of geographically closer populations in East Africa.

Keywords

Acknowledgement

This work was supported by Royal Court Affairs - No Grant Number. Author H. S. Al Shamakhi has received research support from Royal Court Affairs."

References

  1. Batra LR, Batra SWT. Termite-fungus mutualism. In: Batra LR, editor. Insect-fungus symbiosis. Nutrition, mutualism and commensalism. New York (NY): Allanheld, Osmun and Co.; 1979. p. 117-163.
  2. Aanen DK, Boomsma JJ. Evolutionary dynamics of the mutualistic symbiosis between fungus-growing termites and Termitomyces fungi. In: Vega FE, Blackwell M, editors, Insect-Fungal Associations: ecology and Evolution. New York (NY): Oxford University Press; 2005. p. 191-210.
  3. Darlington JPEC. Nutrition and evolution in fungus-growing termites. In: Hunt JH, Nalepa CA, editors. Nourishment and evolution in insect societies. Boulder, CO: Westview Press; 1994. p. 105-130.
  4. Chapela IH, Rehner SA, Schultz TR, et al. Evolutionary history of the symbiosis between fungus-growing ants and their fungi. Science. 1994; 266(5191):1691-1694. https://doi.org/10.1126/science.266.5191.1691
  5. Mikheyev AS, Mueller UG, Abbot P. Comparative dating of attine ant and Lepiotaceous cultivar phylogenies reveals coevolutionary synchrony and discord. Am Nat. 2010;175(6):E126-E133. doi: 10.1086/652472.
  6. Mueller UG, Rehner SA, Schultz TR. The evolution of agriculture in ants. Science. 1998; 281(5385):2034-2038. doi: 10.1126/science.281.5385.2034.
  7. Mueller UG, Schultz TR, Currie CR, et al. The origin of the attine ant-fungus mutualism. Q Rev Biol. 2001;76(2):169-197. doi: 10.1086/393867.
  8. Aanen DK, Eggleton P, Rouland-Lefevre C, et al. The evolution of fungus-growing termites and their mutualistic fungal symbionts. Proc Natl Acad Sci USA. 2002;99(23):14887-14892. doi: 10.1073/pnas.222313099.
  9. Donovan S, Jones D, Sands W, et al. Morphological phylogenetics of termites (Isoptera). Biol J Linnean Soc. 2000;70(3):467-513. doi: 10.1111/j.1095-8312.2000.tb01235.x.
  10. Kambhampati S, Eggleton P. Taxonomy and phylogenetics of Isoptera. In: Abe T, Bignell DA, Higashi M, editors. Termites: evolution, sociality, symbioses and ecology. Dordrecht: Kluwer Academic Publishers; 2000. p. 1-23. doi: 10.1007/978-94-017-3223-9_1.
  11. Miura T, Maekawa K, Kitade O, et al. Phylogenetic relationships among subfamilies in higher termites (Isoptera: termitidae) based on mitochondrial COII gene sequences. Ann Entomol Soc Am. 1998;91(5):515-523. doi: 10.1093/aesa/91.5.515.
  12. Rouland-Lefevre C. Symbiosis with fungi. In: Abe T, Bignell DE, Higashi M, editors. Termites: evolution, sociality, symbioses, ecology. Dordrecht: Springer; 2000. doi: 10.1007/978-94-017-3223-9_14.
  13. Nobre T, Kone NA, Konate S, et al. Dating the fungus-growing termites' mutualism shows a mixture between ancient codiversification and recent symbiont dispersal across divergent hosts. Mol Ecol. 2011b;20(12):2619-2627. doi: 10.1111/j.1365-294X.2011.05090.x.
  14. Rouland-Lefevre C, Bignell DE. Cultivation of symbiotic fungi by termites of the subfamily Macrotermitinae. In: Seckbach J, editor. Symbiosis. Cellular origin, life in extreme habitats and astrobiology, vol 4. Dordrecht: Springer; 2001. p. 731-756. doi: 10.1007/0-306-48173-1_46.
  15. Nobre T, Fernandes C, Boomsma JJ, et al. Farming termites determine the genetic population structure of termitomyces fungal symbionts. Mol Ecol. 2011a;20(9):2023-2033. doi: 10.1111/j.1365-294X.2011.05064.x.
  16. Aanen DK, Ros VI, de Fine Licht HH, et al. Patterns of interaction specificity of fungus-growing termites and Termitomyces symbionts in South Africa. BMC Evol Biol. 2007;7(1):115. doi: 10.1186/1471-2148-7-115.
  17. Deng T, Zhou Y, Cheng M, et al. Synergistic activities of the symbiotic fungus Termitomyces albuminosus on the cellulase of Odontotermes formosanus (Isoptera: Termitidae). Sociobiology. 2008;51:733-740.
  18. Ghazanfar SA. Quantitative and biogeographic analysis of the flora of the sultanate of Oman. Global Ecol Biogeogr Lett. 1992;2(6):189-195. doi: 10.2307/2997660.
  19. White JS, Bruns T, Lee S, et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Shinsky JJ, et al., editors. PCR protocols: a guide to methods applications. Academic Press; 1990. p. 315-322.
  20. Kearse M, Moir R, Wilson A, et al. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28(12):1647-1649. doi: 10.1093/bioinformatics/bts199.
  21. Katoh H, Miura T, Maekawa K, et al. Genetic variation of symbiotic fungi cultivated by the macrotermitine termite Odontotermes formosanus (Isoptera: Termitidae) in the Ryukyu archipelago. Mol Ecol. 2002;11(8):1565-1572. doi: 10.1046/j.1365-294x.2002.01535.x.
  22. Jermiin LS, Ho SY, Ababneh F, et al. The biasing effect of compositional heterogeneity on phylogenetic estimates may be underestimated. Syst Biol. 2004; 53(4):638-643. doi: 10.1080/10635150490468648.
  23. Swofford DL. PAUP: Phylogenetic analysis using parsimony (and other methods), Version 4.0 Beta 10. Sunderland: Sinauer Associates; 2002.
  24. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4:406-425.
  25. Hasegawa M, Kishino H, Yano T-A Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol. 1985;22(2):160-174. doi: 10.1007/BF02101694.
  26. Darriba D, Taboada GL, Doallo R, et al. jModelTest 2: more models, new heuristics and parallel computing. Nat Methods. 2012;9(8):772-772. doi: 10.1038/nmeth.2109.
  27. Hillis DM, Bull JJ. An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Syst Biol. 1993;42(2):182-192. doi: 10.2307/2992540.
  28. Huelsenbeck JP, Ronquist F. MRBAYES: bayesian inference of phylogenetic trees. Bioinformatics. 2001;17(8):754-755. doi: 10.1093/bioinformatics/17.8.754.
  29. Kass R, Raftery A. Bayes factors. J Am Stat Assoc. 1995;90(430):773-795. doi: 10.1080/01621459.1995.10476572.
  30. Rambaut A, Suchard M, Xie D, et al. Tracer v1.6; 2014. http://beast.bio.ed.ac.uk/Tracer
  31. Alfaro ME, Holder MT. The posterior and the prior in Bayesian phylogenetics. Annu Rev Ecol Evol Syst. 2006;37(1):19-42. doi: 10.1146/annurev.ecolsys.37.091305.110021.
  32. Drummond AJ, Suchard MA, Xie D, et al. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol. 2012;29(8):1969-1973. doi: 10.1093/molbev/mss075.
  33. Gernhard T. New analytic results for speciation times in neutral models. Bull Math Biol. 2008; 70(4):1082-1097. doi: 10.1007/s11538-007-9291-0.