과제정보
Previous presentation : the abstract of this manuscript was previously accepted for presentation at: 2021 AANS Annual Scientific Meeting, August 21-25, 2021, Orlando, Florida, USA. E-poster.
참고문헌
- Abi-Aad KR, Anderies BJ, Welz ME, Bendok BR : Machine Learning as a potential solution for shift during stereotactic brain surgery. Neurosurgery 82 : E102-E103, 2018 https://doi.org/10.1093/neuros/nyy043
- Akbari H, Rathore S, Bakas S, Nasrallah MP, Shukla G, Mamourian E, et al. : Histopathology-validated machine learning radiographic biomarker for noninvasive discrimination between true progression and pseudo-progression in glioblastoma. Cancer 126 : 2625-2636, 2020 https://doi.org/10.1002/cncr.32790
- American Cancer Society : Survival rates for selected adult brain and spinal cord tumors. Available at : https://www.cancer.org/cancer/brain-spinal-cord-tumors-adults/detection-diagnosis-staging/survival-rates.html
- Arksey H, O'Malley L : Scoping studies: towards a methodological framework. Int J Soc Res Methodol 8 : 19-32, 2005 https://doi.org/10.1080/1364557032000119616
- Arle JE, Morriss C, Wang ZJ, Zimmerman RA, Phillips PG, Sutton LN : Prediction of posterior fossa tumor type in children by means of magnetic resonance image properties, spectroscopy, and neural networks. J Neurosurg 86 : 755-761, 1997 https://doi.org/10.3171/jns.1997.86.5.0755
- Banzato T, Causin F, Della Puppa A, Cester G, Mazzai L, Zotti A : Accuracy of deep learning to differentiate the histopathological grading of meningiomas on MR images: a preliminary study. J Magn Reson Imaging 50 : 1152-1159, 2019 https://doi.org/10.1002/jmri.26723
- Bernardo A : Virtual reality and simulation in neurosurgical training. World Neurosurg 106 : 1015-1029, 2017 https://doi.org/10.1016/j.wneu.2017.06.140
- Birkmeyer JD, Stukel TA, Siewers AE, Goodney PP, Wennberg DE, Lucas FL : Surgeon volume and operative mortality in the united states. N Engl J Med 349 : 2117-2127, 2003 https://doi.org/10.1056/NEJMsa035205
- Carlson ML, Link MJ : Vestibular schwannomas. N Engl J Med 384 : 1335-1348, 2021 https://doi.org/10.1056/NEJMra2020394
- Christopher AS, Caruso D : Promoting health as a human right in the post-ACA united states. AMA J Ethics 17 : 958-965, 2015 https://doi.org/10.1001/journalofethics.2015.17.10.msoc1-1510
- Dasgupta A, Gupta T, Pungavkar S, Shirsat N, Epari S, Chinnaswamy G, et al. : Nomograms based on preoperative multiparametric magnetic resonance imaging for prediction of molecular subgrouping in medulloblastoma: results from a radiogenomics study of 111 patients. Neuro Oncol 21 : 115-124, 2019
- Dewan MC, Rattani A, Fieggen G, Arraez MA, Servadei F, Boop FA, et al. : Global neurosurgery: the current capacity and deficit in the provision of essential neurosurgical care. Executive summary of the global neurosurgery initiative at the program in global surgery and social change. J Neurosurg 130 : 1055-1064, 2018
- Dietrich J : Clinical presentation, diagnosis, and initial surgical management of high-grade gliomas. Available at : https://www.uptodate.com/contents/clinical-presentation-diagnosis-and-initialsurgical-management-of-high-grade-gliomas
- Dorsey JF, Salinas RD, Dang M : Chapter 63: cancer of the central nervous system in Niederhuber JE, Armitage JO, Doroshow JH, Kastan MB, Tepper JE (eds) : Abeloff's Clinical Oncology, ed 6. Philadelphia : Elsevier, 2020, pp906-967
- Emblem KE, Pinho MC, Zollner FG, Due-Tonnessen P, Hald JK, Schad LR, et al. : A generic support vector machine model for preoperative glioma survival associations. Radiology 275 : 228-234, 2015 https://doi.org/10.1148/radiol.14140770
- Fabelo H, Ortega S, Ravi D, Kiran BR, Sosa C, Bulters D, et al. : Spatiospectral classification of hyperspectral images for brain cancer detection during surgical operations. PLoS One 13 : e0193721, 2018
- Frisken S, Luo M, Machado I, Unadkat P, Juvekar P, Bunevicius A, et al. : Preliminary results comparing thin plate splines with finite element methods for modeling brain deformation during neurosurgery using intraoperative ultrasound. Proc SPIE Int Soc Opt Eng 10951 : 1095120, 2019
- Hashimoto DA, Rosman G, Rus D, Meireles OR : Artificial intelligence in surgery: promises and perils. Ann Surg 268 : 70-76, 2018 https://doi.org/10.1097/SLA.0000000000002693
- He J, Baxter SL, Xu J, Xu J, Zhou X, Zhang K : The practical implementation of artificial intelligence technologies in medicine. Nat Med 25 : 30-36, 2019 https://doi.org/10.1038/s41591-018-0307-0
- Hollon TC, Pandian B, Adapa AR, Urias E, Save AV, Khalsa SSS : Near real-time intraoperative brain tumor diagnosis using stimulated Raman histology and deep neural networks. Nat Med 26 : 52-58, 2020 https://doi.org/10.1038/s41591-019-0715-9
- Hu LS, Ning S, Eschbacher JM, Gaw N, Dueck AC, Smith KA, et al. : Multi-parametric MRI and texture analysis to visualize spatial histologic heterogeneity and tumor extent in glioblastoma. PLoS One 10 : e0141506, 2015
- Jakola AS, Sagberg LM, Gulati S, Solheim O : Advancements in predicting outcomes in patients with glioma: a surgical perspective. Expert Rev Anticancer Ther 20 : 167-177, 2020 https://doi.org/10.1080/14737140.2020.1735367
- Kamen A, Sun S, Wan S, Kluckner S, Chen T, Gigler AM, et al. : Automatic tissue differentiation based on confocal endomicroscopic images for intraoperative guidance in neurosurgery. Biomed Res Int 2016 : 6183218, 2016
- Karhade AV, Ahmed AK, Pennington Z, Chara A, Schilling A, Thio QCBS, et al. : External validation of the SORG 90-day and 1-year machine learning algorithms for survival in spinal metastatic disease. Spine J 20 : 14-21, 2020 https://doi.org/10.1016/j.spinee.2019.09.003
- Karhade AV, Thio QCBS, Ogink PT, Shah AA, Bono CM, Oh KS, et al. : Development of machine learning algorithms for prediction of 30-day mortality after surgery for spinal metastasis. Neurosurgery 85 : E83-E91, 2019 https://doi.org/10.1093/neuros/nyy469
- Ker J, Bai Y, Lee HY, Rao J, Wang L : Automated brain histology classification using machine learning. J Clin Neurosci 66 : 239-245, 2019 https://doi.org/10.1016/j.jocn.2019.05.019
- Khalsa SSS, Hollon TC, Adapa A, Urias E, Srinivasan S, Jairath N, et al. : Automated histologic diagnosis of CNS tumors with machine learning. CNS Oncol 9 : CNS56, 2020
- Krivoshapkin AL, Sergeev GS, Kalneus LE, Gaytan AS, Murtazin VI, Kurbatov VP, et al. : New software for preoperative diagnostics of meningeal tumor histologic types. World Neurosurg 90 : 123-132, 2016 https://doi.org/10.1016/j.wneu.2016.02.084
- Kwoh YS, Hou J, Jonckheere EA, Hayati S : A robot with improved absolute positioning accuracy for CT guided stereotactic brain surgery. IEEE Trans Biomed Eng 35 : 153-160, 1988 https://doi.org/10.1109/10.1354
- Lee JH, Han IH, Kim DH, Yu S, Lee IS, Song YS, et al. : Spine computed tomography to magnetic resonance image synthesis using generative adversarial networks : a preliminary study. J Korean Neurosurg Soc 63 : 386-396, 2020 https://doi.org/10.3340/jkns.2019.0084
- Li L, Wang K, Ma X, Liu Z, Wang S, Du J, et al. : Radiomic analysis of multiparametric magnetic resonance imaging for differentiating skull base chordoma and chondrosarcoma. Eur J Radiol 118 : 81-87, 2019 https://doi.org/10.1016/j.ejrad.2019.07.006
- Li Z, Wang Y, Yu J, Shi Z, Guo Y, Chen L, et al. : Low-grade glioma segmentation based on CNN with fully connected CRF. J Healthc Eng 2017 : 9283480, 2017
- Manni F, Van der Sommen F, Fabelo H, Zinger S, Shan C, Edstrom E, et al. : Hyperspectral imaging for glioblastoma surgery: improving tumor identification using a deep spectral-spatial approach. Sensors (Basel) 20 : 6955, 2020
- Marcus AP, Marcus HJ, Camp SJ, Nandi D, Kitchen N, Thorne L : Improved prediction of surgical resectability in patients with glioblastoma using an artificial neural network. Sci Rep 10 : 5143, 2020
- Mathur A, Jain N, Kesavadas C, Thomas B, Kapilamoorthy TR : Imaging of skull base pathologies: role of advanced magnetic resonance imaging techniques. Neuroradiol J 28 : 426-437, 2015 https://doi.org/10.1177/1971400915609341
- Mattei TA, Rodriguez AH, Sambhara D, Mendel E : Current state-of-the-art and future perspectives of robotic technology in neurosurgery. Neurosurg Rev 37 : 357-366, 2014 https://doi.org/10.1007/s10143-014-0540-z
- McGrath H, Li P, Dorent R, Bradford R, Saeed S, Bisdas S, et al. : Manual segmentation versus semi-automated segmentation for quantifying vestibular schwannoma volume on MRI. Int J Comput Assist Radiol Surg 15 : 1445-1455, 2020 https://doi.org/10.1007/s11548-020-02222-y
- Nam KH, Seo I, Kim DH, Lee JI, Choi BK, Han IH : Machine learning model to predict osteoporotic spine with hounsfield units on lumbar computed tomography. J Korean Neurosurg Soc 62 : 442-449, 2019 https://doi.org/10.3340/jkns.2018.0178
- National Cancer Institute : Adult Central Nervous System Tumors Treatment - Health Professional Version. National Cancer Institute. Available at : https://www.cancer.gov/types/brain/hp/adult-brain-treatment-pdq
- Nematollahi M, Jajroudi M, Arbabi F, Azarhomayoun A, Azimifar Z : The benefits of decision tree to predict survival in patients with glioblastoma multiforme with the use of clinical and imaging features. Asian J Neurosurg 13 : 697-702, 2018 https://doi.org/10.4103/ajns.AJNS_336_16
- Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. : The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 372 : n71, 2021
- Palmisciano P, Jamjoom AAB, Taylor D, Stoyanov D, Marcus HJ : Attitudes of patients and their relatives toward artificial intelligence in neurosurgery. World Neurosurg 138 : e627-e633, 2020 https://doi.org/10.1016/j.wneu.2020.03.029
- Peng L, Parekh V, Huang P, Lin DD, Sheikh K, Baker B, et al. : Distinguishing true progression from radionecrosis after stereotactic radiation therapy for brain metastases with machine learning and radiomics. Int J Radiat Oncol Biol Phys 102 : 1236-1243, 2018 https://doi.org/10.1016/j.ijrobp.2018.05.041
- Pope WB : Brain metastases: neuroimaging. Handb Clin Neurol 149 : 89-112, 2018 https://doi.org/10.1016/B978-0-12-811161-1.00007-4
- Racine E, Boehlen W, Sample M : Healthcare uses of artificial intelligence: challenges and opportunities for growth. Healthc Manage Forum 32 : 272-275, 2019 https://doi.org/10.1177/0840470419843831
- Scaringi C, Agolli L, Minniti G : Technical advances in radiation therapy for brain tumors. Anticancer Res 38 : 6041-6045, 2018 https://doi.org/10.21873/anticanres.12954
- Schlich T : The art and science of surgery: innovation and concepts of medical practice in operative fracture care, 1960s-1970s. Sci Technol Human Values 32 : 65-87, 2007 https://doi.org/10.1177/0162243906293886
- Senders JT, Arnaout O, Karhade AV, Dasenbrock HH, Gormley WB, Broekman ML, et al. : Natural and artificial intelligence in neurosurgery: a systematic review. Neurosurgery 83 : 181-192, 2018 https://doi.org/10.1093/neuros/nyx384
- Senders JT, Zaki MM, Karhade AV, Chang B, Gormley WB, Broekman ML, et al. : An introduction and overview of machine learning in neurosurgical care. Acta Neurochir (Wien) 160 : 29-38, 2018 https://doi.org/10.1007/s00701-017-3385-8
- Shaikhouni A, Elder JB : Computers and neurosurgery. World Neurosurg 78 : 392-398, 2012 https://doi.org/10.1016/j.wneu.2012.08.020
- Shen Z, Xie Y, Shang X, Xiong G, Chen S, Yao Y, et al. : The manufacturing procedure of 3D printed models for endoscopic endonasal trans-sphenoidal pituitary surgery. Technol Health Care 28 : 131-150, 2020 https://doi.org/10.3233/THC-209014
- Shu C, Wang Q, Yan X, Wang J : Whole-genome expression microarray combined with machine learning to identify prognostic biomarkers for high-grade glioma. J Mol Neurosci 64 : 491-500, 2018 https://doi.org/10.1007/s12031-018-1049-7
- Siyar S, Azarnoush H, Rashidi S, Del Maestro RF : Tremor assessment during virtual reality brain tumor resection. J Surg Educ 77 : 643-651, 2020 https://doi.org/10.1016/j.jsurg.2019.11.011
- Slosarek K, Bekman B, Wendykier J, Grzadziel A, Fogliata A, Cozzi L : In silico assessment of the dosimetric quality of a novel, automated radiation treatment planning strategy for linac-based radiosurgery of multiple brain metastases and a comparison with robotic methods. Radiat Oncol 13 : 41, 2018
- Stupp R, Taillibert S, Kanner A, Read W, Steinberg D, Lhermitte B, et al. : Effect of tumor-treating fields plus maintenance temozolomide vs maintenance temozolomide alone on survival in patients with glioblastoma: a randomized clinical trial. JAMA 318 : 2306-2316, 2017 https://doi.org/10.1001/jama.2017.18718
- Stupp R, Wong ET, Kanner AA, Steinberg D, Engelhard H, Heidecke V, et al. : NovoTTF-100A versus physician's choice chemotherapy in recurrent glioblastoma: a randomised phase III trial of a novel treatment modality. Eur J Cancer 48 : 2192-2202, 2012 https://doi.org/10.1016/j.ejca.2012.04.011
- Van Niftrik CHB, Van der Wouden F, Staartjes VE, Fierstra J, Stienen MN, Akeret K, et al. : Machine learning algorithm identifies patients at high risk for early complications after intracranial tumor surgery: registry-based cohort study. Neurosurgery 85 : E756-E764, 2019 https://doi.org/10.1093/neuros/nyz145
- Winkler-Schwartz A, Yilmaz R, Mirchi N, Bissonnette V, Ledwos N, Siyar S, et al. : Machine learning identification of surgical and operative factors associated with surgical expertise in virtual reality simulation. JAMA Netw Open 2 : e198363, 2019
- Yan J, Liu L, Wang W, Zhao Y, Li KK, Li K, et al. : Radiomic features from multi-parameter MRI combined with clinical parameters predict molecular subgroups in patients with medulloblastoma. Front Oncol 10 : 558162, 2020
- Yock AD, Kim GY : Technical note: using K-means clustering to determine the number and position of isocenters in MLC-based multiple target intracranial radiosurgery. J Appl Clin Med Phys 18 : 351-357, 2017 https://doi.org/10.1002/acm2.12139
- Zini G : Artificial intelligence in hematology. Hematology 10 : 393-400, 2005 https://doi.org/10.1080/10245330410001727055