DOI QR코드

DOI QR Code

Protective effects of cardamom aqueous extract against tamoxifen-induced pancreatic injury in female rats

  • Hala Attia (Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University) ;
  • Afraa Alzoubi (College of Pharmacy, King Saud University) ;
  • Nour Al‑anazi (College of Pharmacy, King Saud University) ;
  • Aliah Alshanwani (Department of Physiology, College of Medicine, King Saud University) ;
  • Naglaa El‑Orabi (Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University) ;
  • Alaa Alanteet (Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University) ;
  • Raeesa Mohamad (Department of Anatomy, College of Medicine, King Saud University) ;
  • Rehab Ali (Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University)
  • Received : 2022.12.09
  • Accepted : 2023.06.07
  • Published : 2023.10.15

Abstract

Tamoxifen (TAM) is a commonly used drug for breast cancer treatment. Although effective, TAM has deleterious effects on many organs. The toxic effects of TAM on the pancreas and the underlying mechanisms however, have not fully investigated. In the present study, we investigated the effects of TAM on the pancreatic tissue in female rats. We also examined whether cardamom aqueous extract (CAE) protects against TAM-induced pancreatic injury. TAM-intoxicated rats were injected with 45 mg/kg of TAM for 10 days, whereas rats in the CAE-treated group were administered 10 mL/kg of CAE for 20 days, starting 10 days prior to TAM administration. Treatment with TAM resulted in severe degeneration of the pancreatic acini and marked increases in the serum levels of pancreatic lipase, α-amylase, glucose, fatty acids and triglycerides along with decreased insulin serum levels. TAM led to oxidative stress as evident from a significant increase in the pancreatic levels of lipid peroxides and nitric oxide along with the depletion of reduced glutathione, glutathione peroxidase, and superoxide dismutase. Moreover, inflammation was indicated by a significant increase in tumor necrosis factor-α and interleukin-6 levels, enhanced expression of the macrophage recruitment marker; CD68 as well as up-regulated protein levels of toll-like receptor 4 and nuclear factor kappa B and increased p-p38/MAPK ratio; which are important signals in the production of inflammatory cytokines. TAM also markedly increased the pancreatic levels of caspase-3 and BAX reflecting its apoptotic effects. The CAE treatment ameliorated all the biochemical and histological changes induced by TAM. The present study revealed, for the first time, that TAM has toxic effects on the pancreatic tissue through oxidative stress, inflammation and apoptotic effects. The present study also provides evidence that CAE exerts cytoprotective effects against these deleterious effects induced by TAM in the pancreatic tissue.

Keywords

Acknowledgement

Authors extend their appreciation to Prince Naif Health Research Center, Investigator support Unit for the language editing service provided.

References

  1. Lumachi F, Santeufemia DA, Basso SM (2015) Current medical treatment of estrogen receptor-positive breast cancer. World J Biol Chem 6:231-239. https://doi.org/10.4331/wjbc.v6.i3.231
  2. Singh HK, Prasad MS, Kandasamy AK, Dharanipragada K (2016) Tamoxifen-induced hypertriglyceridemia causing acute pancreatitis. J Pharmacol Pharmacother 7:38-40. https://doi.org/10.4103/0976-500X.179365
  3. Xiong R, Zhao J, Gutgesell LM, Wang Y, Lee S, Karumudi B, Zhao H, Lu Y, Tonetti DA, Thatcher GR (2017) Novel selective estrogen receptor downregulators (SERDs) developed against treatment-resistant breast cancer. J Med Chem 60:1325-1342. https://doi.org/10.1021/acs.jmedchem.6b01355
  4. Yang G, Nowsheen S, Aziz K, Georgakilas AG (2013) Toxicity and adverse effects of Tamoxifen and other anti-estrogen drugs. Pharmacol Ther 139:392-404. https://doi.org/10.1016/j.pharmthera.2013.05.005
  5. Sakhri J, Ben Salem C, Harbi H, Fathallah N, Ltaief R (2010) Severe acute pancreatitis due to tamoxifen-induced hypertriglyceridemia with positive rechallenge. JOP 11:382-384
  6. Ahn SH, Granger A, Rankin MM, Lam CJ, Cox AR, Kushner JA (2019) Tamoxifen suppresses pancreatic β-cell proliferation in mice. PLoS One 14:e0214829. https://doi.org/10.1371/journal.pone.0214829
  7. Barone BB, Yeh HC, Snyder CF, Peairs KS, Stein KB, Derr RL, Wolf AC, Brancati FL (2008) Long-term all-cause mortality in cancer patients with preexisting diabetes mellitus: a systematic review and meta-analysis. JAMA 300:2754-2764. https://doi.org/10.1001/jama.2008.824
  8. Owumi E, S, K Olusola J, O Arunsi U, K Oyelere A, (2021) Chlorogenic acid abates oxido-infammatory and apoptotic responses in the liver and kidney of Tamoxifen-treated rats. Toxicol Res (Camb) 10:345-353. https://doi.org/10.1093/toxres/tfab002
  9. El-Dessouki AM, El Fattah MA, Awad AS, Zaki HF (2018) Zafrlukast and vincamine ameliorate tamoxifen-induced oxidative stress and inflammation: Role of the JNK/ERK pathway. Life Sci 202:78-88. https://doi.org/10.1016/j.lfs.2018.04.002
  10. Parvez S, Tabassum H, Banerjee BD, Raisuddin S (2008) Taurine prevents tamoxifen-induced mitochondrial oxidative damage in mice. Basic Clin Pharmacol Toxicol 102:382-387. https://doi.org/10.1111/j.1742-7843.2008.00208.x
  11. Nazarewicz RR, Zenebe WJ, Parihar A, Larson SK, Alidema E, Choi J, Ghafourifar P (2007) Tamoxifen induces oxidative stress and mitochondrial apoptosis via stimulating mitochondrial nitric oxide synthase. Cancer Res 67:1282-1290. https://doi.org/10.1158/0008-5472.CAN-06-3099
  12. Ribeiro MP, Santos AE, Custodio JB (2014) Mitochondria: the gateway for tamoxifen-induced liver injury. Toxicology 323:10-18. https://doi.org/10.1016/j.tox.2014.05.009
  13. Radi R, Beckman JS, Bush KM, Freeman BA (1991) Peroxynitrite-induced membrane lipid peroxidation: the cytotoxic potential of superoxide and nitric oxide. Arch Biochem Biophys 288:481-487. https://doi.org/10.1016/0003-9861(91)90224-7
  14. Zhou WB, Zhang XX, Cai Y, Sun W, Li H (2019) Osthole prevents tamoxifen-induced liver injury in mice. Acta Pharmacol Sin 40:608-619. https://doi.org/10.1038/s41401-018-0171-y
  15. Rahman MM, Alam MN, Ulla A, Sumi FA, Subhan N, Khan T, Sikder B, Hossain H, Reza HM, Alam MA (2017) Cardamom powder supplementation prevents obesity, improves glucose intolerance, inflammation and oxidative stress in liver of high carbohydrate high fat diet induced obese rats. Lipids Health Dis 16:151. https://doi.org/10.1186/s12944-017-0539-x
  16. Goyal SN, Sharma C, Mahajan UB, Patil CR, Agrawal YO, Kumari S, Arya DS, Ojha S (2015) Protective Effects of Cardamom in Isoproterenol-Induced Myocardial Infarction in Rats. Int J Mol Sci 16:27457-27469. https://doi.org/10.3390/ijms161126040
  17. Akrayi H (2012) Antibacterial Effect of Seed Extracts of Cardamom (Elettaria cardamomum) against Staphylococcus aureus and Proteus mirabilis. Tikrit J Pure Sci 17:14-18
  18. Majdalawieh AF, Carr RI (2010) In vitro investigation of the potential immunomodulatory and anti-cancer activities of black pepper (Piper nigrum) and cardamom (Elettaria cardamomum). J Med Food 13:371-381. https://doi.org/10.1089/jmf.2009.1131
  19. Aghasi M, Koohdani F, Qorbani M, Nasli-Esfahani E, Ghazi-Zahedi S, Khoshamal H, Keshavarz A, Sotoudeh G (2019) Benefcial effects of green cardamom on serum SIRT1, glycemic indices and triglyceride levels in patients with type 2 diabetes mellitus: a randomized double-blind placebo controlled clinical trial. J Sci Food Agric 99:3933-3940. https://doi.org/10.1002/jsfa.9617
  20. Daneshi-Maskooni M, Keshavarz SA, Qorbani M, Mansouri S, Alavian SM, Badri-Fariman M, Jazayeri-Tehrani SA, Sotoudeh G (2019) Green cardamom supplementation improves serum irisin, glucose indices, and lipid profiles in overweight or obese nonalcoholic fatty liver disease patients: a double-blind randomized placebo-controlled clinical trial. BMC Compl Altern Med 19:59. https://doi.org/10.1186/s12906-019-2465-0
  21. Kanthlal SK, Joseph J, Paul B (2020) Antioxidant and vasorelaxant effects of aqueous extract of large cardamom in L-NAME induced hypertensive rats. Clin Exp Hypertens 42:581-589. https://doi.org/10.1080/10641963.2020.1739699
  22. Abu Gazia M, El-Magd MA (2018) Ameliorative effect of cardamom aqueous extract on doxorubicin-induced cardiotoxicity in rats. Cells Tissues Organs 206:62-72. https://doi.org/10.1159/000496109
  23. Suneetha WJ, Krishnakantha TP (2005) Cardamom extract as inhibitor of human platelet aggregation. Phytother Res 19:437-440. https://doi.org/10.1002/ptr.1681
  24. Aboubakr M, Abdelazem A (2015) Hepatoprotective effect of aqueous extract of cardamom against gentamicin induced hepatic damage in rats. Int J Sci Basic Appl 5:1-4. https://doi.org/10.14419/ijbas.v5i1.5435
  25. Elkomy A, Aboubakr M, Elsawaf N (2015) Renal protective effect of cardamom against nephrotoxicity induced by gentamicin in rats. BVMJ 29:100-105 https://doi.org/10.21608/bvmj.2015.31681
  26. Ahmed AS, Ahmed Q, Saxena AK, Jamal P (2017) Evaluation of in vitro antidiabetic and antioxidant characterizations of Elettaria cardamomum (L) Maton (Zingiberaceae), Piper cubeba L f (Piperaceae), and Plumeria rubra L (Apocynaceae). Pak J Pharm Sci 30:113-126
  27. Al-Youssef H, Alqahtani A, Hassan W, Alzoubi A, Abdelaziz S (2021) chemical profile, in vitro antioxidant, pancreatic lipase, and alpha-amylase inhibition assays of the aqueous extract of Elettaria cardamomum L. Fruits J Chem 2021:5583001. https://doi.org/10.1155/2021/5583001
  28. Suddek GM (2014) Protective role of thymoquinone against liver damage induced by tamoxifen in female rats. Can J Physiol Pharmacol 92:640-644. https://doi.org/10.1139/cjpp-2014-0148
  29. Albukhari AA, Gashlan HM, El-Beshbishy HA, Nagy AA, AbdelNaim AB (2009) Caffeic acid phenethyl ester protects against tamoxifen-induced hepatotoxicity in rats. Food Chem Toxicol 47:1689-1695. https://doi.org/10.1016/j.fct.2009.04.021
  30. El-Kashef DH, El-Sheakh AR (2019) Hepatoprotective effect of celecoxib against tamoxifen-induced liver injury via inhibiting ASK-1/JNK pathway in female rats. Life Sci 231:116573. https://doi.org/10.1016/j.lfs.2019.116573
  31. Alshanwani AR, Mohamed AM, Faddah LM, Shaheen S, Arafah MM, Hagar H, Alhusaini AM, Alharbi FMB, AlHarthii A, Badr AM (2021) Cyanocobalamin and/or calcitriol mitigate renal damage-mediated by tamoxifen in rats: Implication of caspase-3/NF-κB signaling pathways. Life Sci 277:119512. https://doi.org/10.1016/j.lfs.2021.119512
  32. Hickman DL (2019) Wellbeing of alcohol-preferring rats euthanized with carbon dioxide at very low and low volume displacement rates. J Am Assoc Lab Anim Sci 58:78-82. https://doi.org/10.30802/AALAS-JAALAS-18-000004
  33. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351-358. https://doi.org/10.1016/0003-2697(79)90738-3
  34. Moron MS, Depierre JW, Mannervik B (1979) Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver. Biochim Biophys Acta 582:67-78. https://doi.org/10.1016/0304-4165(79)90289-7
  35. Marklund S, Marklund G (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47:469-474. https://doi.org/10.1111/j.1432-1033.1974.tb03714.x
  36. Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR (1982) Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids. Anal Biochem 126:131-138. https://doi.org/10.1016/0003-2697(82)90118-x
  37. Su S, Liang T, Zhou X, He K, Li B, Xia X (2019) Qingyi decoction attenuates severe acute pancreatitis in rats via inhibition of inflammation and protection of the intestinal barrier. J Int Med Res 47:2215-2227. https://doi.org/10.1177/0300060518809289
  38. Gan SI, Edwards AL, Symonds CJ, Beck PL (2006) Hypertriglyceridemia-induced pancreatitis: A case-based review. World J Gastroenterol 12:7197-7202. https://doi.org/10.3748/wjg.v12.i44.7197
  39. Ewald N, Hardt PD, Kloer HU (2009) Severe hypertriglyceridemia and pancreatitis: presentation and management. Curr Opin Lipidol 20:497-504. https://doi.org/10.1097/MOL.0b013e3283319a1d
  40. Han X, Shen T, Lou H (2007) Dietary polyphenols and their biological significance. Int J Mol Sci 8:950-988. https://doi.org/10.3390/i8090950
  41. Brglez Mojzer E, Knez Hrncic M, Skerget M, Knez Z, Bren U (2016) Polyphenols: extraction methods, antioxidative action, bioavailability and Anticarcinogenic effects. Molecules 21:901. https://doi.org/10.3390/molecules21070901
  42. Miltonprabu S, Thangapandiyan S (2015) Epigallocatechin gallate potentially attenuates Fluoride induced oxidative stress mediated cardiotoxicity and dyslipidemia in rats. J Trace Elem Med Biol 29:321-335. https://doi.org/10.1016/j.jtemb.2014.08.015
  43. Liu CL, Yang TL (2003) Sequential changes in serum triglyceride levels during adjuvant tamoxifen therapy in breast cancer patients and the effect of dose reduction. Breast Cancer Res Treat 79:11-16. https://doi.org/10.1023/a:1023348021773
  44. Filippatos TD, Liberopoulos EN, Pavlidis N, Elisaf MS, Mikhailidis DP (2009) Effects of hormonal treatment on lipids in patients with cancer. Cancer Treat Rev 35:175-184. https://doi.org/10.1016/j.ctrv.2008.09.007
  45. Galleano M, Calabro V, Prince PD, Litterio MC, Piotrkowski B, Vazquez-Prieto MA, Miatello RM, Oteiza PI, Fraga CG (2012) Flavonoids and metabolic syndrome. Ann N Y Acad Sci 1259:87-94. https://doi.org/10.1111/j.1749-6632.2012.06511.x
  46. Wynne K, Devereaux B, Dornhorst A (2019) Diabetes of the exocrine pancreas. J Gastroenterol Hepatol 34:346-354. https://doi.org/10.1111/jgh.14451
  47. Mega C, de Lemos ET, Vala H, Fernandes R, Oliveira J, Mascarenhas-Melo F, Teixeira F, Reis F (2011) Diabetic nephropathy amelioration by a low-dose sitagliptin in an animal model of type 2 diabetes (Zucker diabetic fatty rat). Exp Diabetes Res 2011:162092. https://doi.org/10.1155/2011/162092
  48. Duncan RE, Ahmadian M, Jaworski K, Sarkadi-Nagy E, Sul HS (2007) Regulation of lipolysis in adipocytes. Annu Rev Nutr 27:79-101. https://doi.org/10.1146/annurev.nutr.27.061406.093734
  49. Nitasha Bhat GM, Nayak N, Vinodraj K, Chandralekha N, Mathai P, Cherian J (2015) Comparison of the efficacy of cardamom (Elettaria cardamomum) with pioglitazone on dexamethasone-induced hepatic steatosis, dyslipidemia, and hyperglycemia in albino rats. J Adv Pharm Technol Res 6:136-140. https://doi.org/10.4103/2231-4040.157981
  50. Winarsi H, Sasongko N, Purwanto A, Nuraeni I (2014) Effect of cardamom leaves extract as antidiabetic, weight lost and hypocholesterolemic to alloxan induced Sprague Dawley diabetic rats. Int Food Res J 21:2253
  51. Soares JMD, Pereira Leal AEB, Silva JC, Almeida JRGS, de Oliveira HP (2017) Influence of Flavonoids on Mechanism of Modulation of Insulin Secretion. Pharmacogn Mag 13:639-646. https://doi.org/10.4103/pm.pm_87_17
  52. Oliveira H, Fernandes A, Bras N, Mateus N, de Freitas V, Fernandes I (2020) Anthocyanins as antidiabetic agents-in vitro and in silico approaches of preventive and therapeutic effects. Molecules 25:3813. https://doi.org/10.3390/molecules25173813
  53. Kim HK, Park HR, Lee JS, Chung TS, Chung HY, Chung J (2007) Down-regulation of iNOS and TNF-alpha expression by kaempferol via NF-kappaB inactivation in aged rat gingival tissues. Biogerontology 8:399-408. https://doi.org/10.1007/s10522-007-9083-9
  54. Sun J, Bhatia M (2007) Blockade of neurokinin-1 receptor attenuates CC and CXC chemokine production in experimental acute pancreatitis and associated lung injury. Am J Physiol Gastrointest Liver Physiol 292:G143-G153. https://doi.org/10.1152/ajpgi.00271.2006
  55. Seo SW, Jung WS, Lee SE, Choi CM, Shin BC, Kim EK, Kwon KB, Hong SH, Yun KJ, Park RK, Shin MK, Song HJ, Park SJ (2008) Effects of bee venom on cholecystokinin octapeptide-induced acute pancreatitis in rats. Pancreas 36:e22-e29. https://doi.org/10.1097/MPA.0b013e31815a396b
  56. Hong YP, Yu J, Su YR, Mei FC, Li M, Zhao KL, Zhao L, Deng WH, Chen C, Wang WX (2020) high-fat diet aggravates acute pancreatitis via TLR4-mediated necroptosis and inflammation in rats. Oxid Med Cell Longev 2020:8172714. https://doi.org/10.1155/2020/8172714
  57. Hamalainen M, Nieminen R, Vuorela P, Heinonen M, Moilanen E (2007) Anti-inflammatory effects of flavonoids: genistein, kaempferol, quercetin, and daidzein inhibit STAT-1 and NF-kappaB activations, whereas flavone, isorhamnetin, naringenin, and pelargonidin inhibit only NF-kappaB activation along with their inhibitory effect on iNOS expression and NO production in activated macrophages. Mediators Inflamm 2007:45673. https://doi.org/10.1155/2007/45673
  58. Kawai T, Akira S (2005) Pathogen recognition with Toll-like receptors. Curr Opin Immunol 17:338-344. https://doi.org/10.1016/j.coi.2005.02.007
  59. Abdelmageed ME, Nader MA, Zaghloul MS (2021) Targeting HMGB1/TLR4/NF-κB signaling pathway by protocatechuic acid protects against l-arginine induced acute pancreatitis and multiple organs injury in rats. Eur J Pharmacol 906:174279. https://doi.org/10.1016/j.ejphar.2021.174279
  60. Junyuan Z, Hui X, Chunlan H, Junjie F, Qixiang M, Yingying L, Lihong L, Xingpeng W, Yue Z (2018) Quercetin protects against intestinal barrier disruption and inflammation in acute necrotizing pancreatitis through TLR4/MyD88/p38 MAPK and ERS inhibition. Pancreatol 18:742-752. https://doi.org/10.1016/j.pan.2018.08.001
  61. Ma R, Yuan F, Wang S, Liu Y, Fan T, Wang F (2018) Calycosin alleviates cerulein-induced acute pancreatitis by inhibiting the inflammatory response and oxidative stress via the p38 MAPK and NF-κB signal pathways in mice. Biomed Pancreatology 105:599-605. https://doi.org/10.1016/j.biopha.2018.05.080
  62. Jakkampudi A, Jangala R, Reddy BR, Mitnala S, Nageshwar Reddy D, Talukdar R (2016) NF-κB in acute pancreatitis: Mechanisms and therapeutic potential. Pancreatology 16:477-488. https://doi.org/10.1016/j.pan.2016.05.001
  63. Chen Z, Chen Y, Pan L, Li H, Tu J, Liu C, Dai X, Zhang X, Sun G, Feng D (2015) Dachengqi decoction attenuates inflammatory response via inhibiting HMGB1 mediated NF-κB and P38 MAPK signaling pathways in severe acute pancreatitis. Cell Physiol Biochem 37:1379-1389. https://doi.org/10.1159/000430403
  64. Souissi M, Azelmat J, Chaieb K, Grenier D (2020) Antibacterial and anti-inflammatory activities of cardamom (Elettaria cardamomum) extracts: Potential therapeutic benefits for periodontal infections. Anaerobe 61:102089. https://doi.org/10.1016/j.anaerobe.2019.102089
  65. Sendler M, Weiss FU, Golchert J, Homuth G, van den Brandt C, Mahajan UM, Partecke LI, Doring P, Gukovsky I, Gukovskaya AS, Wagh PR, Lerch MM, Mayerle J (2018) Cathepsin B-mediated activation of trypsinogen in endocytosing macrophages increases severity of pancreatitis in mice. Gastroenterology 154:704-718.e10. https://doi.org/10.1053/j.gastro.2017.10.018
  66. Al-Hassan S, Attia H, Alomar H, Arafa M, Ali RA (2021) The inhibitory mechanisms of losartan and vitamin D on amiodarone-induced lung inflammation in rats: Role of mitogen-activated protein kinases/activator protein-1. J Biochem Mol Toxicol 35:e22923. https://doi.org/10.1002/jbt.22923
  67. Tsukamoto K, Kinoshita M, Kojima K, Mikuni Y, Kudo M, Mori M, Fujita M, Horie E, Shimazu N, Teramoto T (2002) Synergically increased expression of CD36, CLA-1 and CD68, but not of SR-A and LOX-1, with the progression to foam cells from macrophages. J Atheroscler Thromb 9:57-64. https://doi.org/10.5551/jat.9.57
  68. Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35:495-516. https://doi.org/10.1080/01926230701320337
  69. Adewole SO, Caxton-Martins EA, Ojewole JA (2006) Protective effect of quercetin on the morphology of pancreatic beta-cells of streptozotocin-treated diabetic rats. Afr J Tradit Complement Altern Med 4:64-74. https://doi.org/10.4314/ajtcam.v4i1.31196
  70. Lee YJ, Suh KS, Choi MC, Chon S, Oh S, Woo JT, Kim SW, Kim JW, Kim YS (2010) Kaempferol protects HIT-T15 pancreatic beta cells from 2-deoxy-D-ribose-induced oxidative damage. Phytother Res 24:419-423. https://doi.org/10.1002/ptr.2983
  71. Ghorbani A, Rashidi R, Shafiee-Nick R (2019) Flavonoids for preserving pancreatic beta cell survival and function: A mechanistic review. Biomed Pharmacother 111:947-957. https://doi.org/10.1016/j.biopha.2018.12.127
  72. Coskun O, Kanter M, Korkmaz A, Oter S (2005) Quercetin, a flavonoid antioxidant, prevents and protects streptozotocin-induced oxidative stress and beta-cell damage in rat pancreas. Pharmacol Res 51:117-123. https://doi.org/10.1016/j.phrs.2004.06.002
  73. Bashir N, Manoharan V, Miltonprabu S (2016) Grape seed proanthocyanidins protects against cadmium induced oxidative pancreatitis in rats by attenuating oxidative stress, inflammation and apoptosis via Nrf-2/HO-1 signaling. J Nutr Biochem 32:128-141. https://doi.org/10.1016/j.jnutbio.2016.03.001
  74. Du D, Yao L, Zhang R, Shi N, Shen Y, Yang X, Zhang X, Jin T, Liu T, Hu L, Xing Z, Criddle DN, Xia Q, Huang W, Sutton R (2018) Protective effects of flavonoids from Coreopsis tinctoria Nutt. on experimental acute pancreatitis via Nrf-2/ARE-mediated antioxidant pathways. J Ethnopharmacol 224:261-272. https://doi.org/10.1016/j.jep.2018.06.003