DOI QR코드

DOI QR Code

Atg5 knockout induces alternative autophagy via the downregulation of Akt expression

  • Hye‑Gyo Kim (Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University) ;
  • Myeong‑Han Ro (Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University) ;
  • Michael Lee (Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University)
  • Received : 2023.02.23
  • Accepted : 2023.05.10
  • Published : 2023.10.15

Abstract

Autophagy play contradictory roles in cellular transformation. We previously found that the knockout (KO) of autophagy-related 5 (Atg5), which is essential for autophagy, leads to the malignant transformation of NIH 3T3 cells. In this study, we explored the mechanism by which autophagy contributes to this malignant transformation using two transformed cell lines, Atg5 KO and Ras-NIH 3T3. Monomeric red fluorescent protein-green fluorescent protein-light chain 3 reporter and Cyto-ID staining revealed that Ras-NIH 3T3 cells exhibited higher basal autophagy activity than NIH 3T3 cells. Additionally, transformed cells, regardless of their Atg5 KO status, were more sensitive to autophagy inhibitors (SBI-0206965, chloroquine, and obatoclax) than the untransformed NIH 3T3 cells, suggesting that the transformed cells are more autophagy-dependent than the normal cells. Loss of Atg5 improved the cell viability and mobility, especially in Ras-NIH 3T3 cells. Furthermore, we discovered that autophagy was alternatively induced in a Rab9-dependent manner in Ras-NIH 3T3 and NIH 3T3/Atg5 KO cells. In particular, Atg5 KO cells showed reduced mTOR-mediated phosphorylation of Akt (pAkt S473), indicating the mTOR-independent occurrence of alternative autophagy in Atg5 KO cells. Therefore, our study provides evidence that alternative autophagy may contribute to tumorigenesis in cells with an impaired Atg5-dependent autophagy pathway.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Ministry of Science and ICT (MIST) (NRF-2021R1F1A1046654).

References

  1. Parzych KR, Klionsky DJ (2014) An overview of autophagy: Morphology, mechanism, and regulation. Antioxid Redox Signal 20:460-473. https://doi.org/10.1089/ars.2013.5371 
  2. Mowers EE, Sharif MN, Macleod KF (2017) Autophagy in cancer metastasis. Oncogene 36:1619-1630. https://doi.org/10.1038/onc.2016.333 
  3. Li YJ, Lei YH, Yao N, Wang CR, Hu N, Ye WC et al (2017) Autophagy and multidrug resistance in cancer. Chin J Cancer 36:52. https://doi.org/10.1186/s40880-017-0219-2 
  4. Galluzzi L, Bravo-San Pedro JM, Levine B, Green DR, Kroemer G (2017) Pharmacological modulation of autophagy: therapeutic potential and persisting obstacles. Nat Rev Drug Discov 16:487-511. https://doi.org/10.1038/nrd.2017.22 
  5. Chavez-Dominguez R, Perez-Medina M, Lopez-Gonzalez JS, Galicia-Velasco M, Aguilar-Cazares D (2020) The double-edge sword of autophagy in cancer: from tumor suppression to protumor activity. Front Oncol 10:578418. https://doi.org/10.3389/fonc.2020.578418 
  6. Kimmelman AC (2011) The dynamic nature of autophagy in cancer. Genes Dev 25:1999-2010. https://doi.org/10.1101/gad.17558811 
  7. Yeom H, Hwang SH, Han B-I, Lee M (2021) Differential sensitivity of wild-type and BRAF-mutated cells to combined BRAF and autophagy inhibition. Biomol Ther 29:434-444. https://doi.org/10.4062/biomolther.2020.203 
  8. Hwang SH, Han B-I, Lee M (2018) Knockout of ATG5 leads to malignant cell transformation and resistance to Src family kinase inhibitor PP2. J Cell Physiol 233:506-515. https://doi.org/10.1002/jcp.25912 
  9. Ma T, Li J, Xu Y, Yu C, Xu T, Wang H et al (2015) Atg5-independent autophagy regulates mitochondrial clearance and is essential for iPSC reprogramming. Nat Cell Biol 17:1379-1387. https://doi.org/10.1038/ncb3256 
  10. Nagata M, Arakawa S, Yamaguchi H, Torii S, Endo H, Tsujioka M et al (2018) Dram1 regulates DNA damage-induced alternative autophagy. Cell Stress 2:55-65. https://doi.org/10.15698/cst2018.03.127 
  11. Nishida Y, Arakawa S, Fujitani K, Yamaguchi H, Mizuta T, Kanaseki T et al (2009) Discovery of Atg5/Atg7-independent alternative macroautophagy. Nature 461:654-658. https://doi.org/10.1038/nature08455 
  12. Tooze SA, Yoshimori T (2010) The origin of the autophagosomal membrane. Nat Cell Biol 12:831-835. https://doi.org/10.1038/ncb0910-831 
  13. Torii S, Yamaguchi H, Nakanishi A, Arakawa S, Honda S, Moriwaki K et al (2020) Identification of a phosphorylation site on Ulk1 required for genotoxic stress-induced alternative autophagy. Nat Commun 11:1754. https://doi.org/10.1038/s41467-020-15577-2 
  14. Eom SY, Hwang SH, Yeom H, Lee M (2019) An ATG5 knockout promotes paclitaxel resistance in v-Ha-ras-transformed NIH 3T3 cells. Biochem Biophys Res Commun 513:234-241. https://doi.org/10.1016/j.bbrc.2019.03.197 
  15. Geback T, Schulz MM, Koumoutsakos P, Detmar M (2009) TScratch: a novel and simple software tool for automated analysis of monolayer wound healing assays. Biotechniques 46:265-274. https://doi.org/10.2144/000113083 
  16. Egan DF, Chun MG, Vamos M, Zou H, Rong J, Miller CJ et al (2015) Small molecule inhibition of the autophagy kinase ULK1 and identification of ULK1 substrates. Mol Cell 59:285-297. https://doi.org/10.1016/j.molcel.2015.05.031 
  17. Piao S, Amaravadi RK (2016) Targeting the lysosome in cancer. Ann NY Acad Sci 1371:45-54. https://doi.org/10.1111/nyas.12953 
  18. Koehler BC, Jassowicz A, Scherr AL, Lorenz S, Radhakrishnan P, Kautz N et al (2015) Pan-Bcl-2 inhibitor Obatoclax is a potent late stage autophagy inhibitor in colorectal cancer cells independent of canonical autophagy signaling. BMC Cancer 15:919. https://doi.org/10.1186/s12885-015-1929-y 
  19. McCoy F, Hurwitz J, McTavish N, Paul I, Barnes C, O'Hagan B et al (2010) Obatoclax induces Atg7-dependent autophagy independent of beclin-1 and BAX/BAK. Cell Death Dis 1:e108. https://doi.org/10.1038/cddis.2010.86 
  20. Larsen KB, Lamark T, Overvatn A, Harneshaug I, Johansen T, Bjorkoy G (2010) A reporter cell system to monitor autophagy based on p62/SQSTM1. Autophagy 6:784-793. https://doi.org/10.4161/auto.6.6.12510 
  21. Mizushima N, Yoshimori T, Levine B (2010) Methods in mammalian autophagy research. Cell 140:313-326. https://doi.org/10.1016/j.cell.2010.01.028 
  22. Cagnol S, Chambard J-C (2010) ERK and cell death: mechanisms of ERK-induced cell death-apoptosis, autophagy and senescence. FEBS J 277:2-21. https://doi.org/10.1111/j.1742-4658.2009.07366.x 
  23. Galluzzi L, Pietrocola F, Bravo-San Pedro JM, Amaravadi RK, Baehrecke EH, Cecconi F et al (2015) Autophagy in malignant transformation and cancer progression. EMBO J 34:856-880. https://doi.org/10.15252/embj.201490784 
  24. Wang J, Whiteman MW, Lian H, Wang G, Singh A, Huang D et al (2009) A non-canonical MEK/ERK signaling pathway regulates autophagy via regulating Beclin 1. J Biol Chem 284:21412-21424. https://doi.org/10.1074/jbc.M109.026013 
  25. Chen Z, Lee HJ, Kim H, Cho S, Kim K (2022) δ-Catenin promotes cell migration and invasion via Bcl-2-regulated suppression of autophagy in prostate cancer cells. Am J Cancer Res 12:108-122 
  26. Guo JY, Chen HY, Mathew R, Fan J, Strohecker AM, Karsli-Uzunbas G et al (2011) Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis. Genes Dev 25:460-470. https://doi.org/10.1101/gad.2016311 
  27. Kucera A, Bakke O, Progida C (2016) The multiple roles of Rab9 in the endolysosomal system. Commun Integr Biol 9:e1204498. https://doi.org/10.1080/19420889.2016.1204498 
  28. Honda S, Arakawa S, Yamaguchi H, Torii S, Tajima Sakurai H, Tsujioka M et al (2020) Association between Atg5-independent alternative autophagy and neurodegenerative diseases. J Mol Biol 432:2622-2632. https://doi.org/10.1016/j.jmb.2020.01.016 
  29. Su Y, Qian H, Zhang J, Wang S, Shi P, Peng X (2005) The diversity expression of p62 in digestive system cancers. Clin Immunol 116:118-123. https://doi.org/10.1016/j.clim.2005.04.004 
  30. Ra EA, Lee TA, Kim SW, Park A, Choi HJ, Jang I et al (2016) TRIM31 promotes Atg5/Atg7-independent autophagy in intestinal cells. Nature Commun 7:11726. https://doi.org/10.1038/ncomms11726 
  31. Gallagher LE, Radhi OA, Abdullah MO, McCluskey AG, Boyd M, Chan EYW (2017) Lysosomotropism depends on glucose: a chloroquine resistance mechanism. Cell Death Dis 8:e3014. https://doi.org/10.1038/cddis.2017.416