DOI QR코드

DOI QR Code

Endotoxin of Porphyromonas gingivalis amplifies the inflammatory response in hyperglycemia-induced zebrafish through a mechanism involving chitinase-like protein YKL-40 analogs

  • Gizem Gunduz (Department of Periodontology, Institute of Health Sciences, Marmara University) ;
  • Merih Beler (Department of Biochemistry, Institute of Health Sciences, Marmara University) ;
  • Ismail Unal (Department of Biochemistry, Institute of Health Sciences, Marmara University) ;
  • Derya Cansiz (Department of Biochemistry, Faculty of Medicine, Istanbul Medipol University) ;
  • Ebru Emekli-Alturfan (Department of Biochemistry, Faculty of Dentistry, Marmara University) ;
  • Kemal Naci Kose (Department of Periodontology, Faculty of Dentistry, Marmara University, Marmara University Basibuyuk Medical Campus)
  • Received : 2023.01.12
  • Accepted : 2023.05.10
  • Published : 2023.10.15

Abstract

Porphyromonas gingivalis (P. gingivalis), a key pathogen in periodontal diseases, is also associated with hyperglycemia-associated systemic diseases, including diabetes mellitus (DM). Gingipains are the most important endotoxins of P. gingivalis, and in vivo studies using gingipains are scarce. Zebrafish (Danio rerio) is a vertebrate with high physiological and genetic homology with humans that has multiple co-orthologs for human genes, including inflammation-related proteins. The aim of our study was to determine the effects of gingipain in a hyperglycemia-induced zebrafish model by evaluating inflammation, oxidant-antioxidant status, and the cholinergic system. Adult zebrafish were grouped into the control group (C), hyperglycemia-induced group subjected to 15 days of overfeeding (OF), gingipain-injected group (GP), and gingipain-injected hyperglycemic group (OF+GP). At the end of 15 days, an oral glucose tolerance test (OGTT) was performed, and fasting blood glucose (FBG) levels were measured. Lipid peroxidation (LPO), nitric oxide (NO), glutathione (GSH), glutathione S-transferase, catalase, acetylcholinesterase (AChE), alkaline phosphatase (ALP), and sialic acid (SA) levels were determined spectrophotometrically in the hepatopancreas. The expression levels of tnf-α, il-1β, ins, crp, and the acute phase protein YKL-40 analogs chia.5 and chia.6 were evaluated by RT-PCR. After two weeks of overfeeding, significantly increased weight gain, FBG, and OGTT confirmed that the zebrafish were hyperglycemic. Increased oxidative stress, inflammation, and AChE and ALP activities were observed in both the overfeeding and GP groups. Amplification of inflammation and oxidative stress was evident in the OF+GP group through increased expression of crp, il-1β, chia.5, and chia.6 and increased LPO and NO levels. Our results support the role of gingipains in the increased inflammatory response in hyperglycemia-associated diseases.

Keywords

Acknowledgement

The authors would like to thank Marmara University Scientific Research and Project Commission, Project No: TDK-2021-10420 for funding this project.

References

  1. Petersen PE, Baehni PC (2012) Periodontal health and global public health. Periodontol 60:7-14. https://doi.org/10.1111/j.1600-0757.2012.00452.x 
  2. Levine RS (2013) Obesity, diabetes and periodontitis-a triangular relationship? Br Dent J 215:35-39. https://doi.org/10.1038/sj.bdj.2013.627 
  3. Khader YS, Dauod AS, El-Qaderi SS, Alkafajei A, Batayha WQ (2006) Periodontal status of diabetics compared with nondiabetics: a meta-analysis. J Diabetes Complications 20:59-68. https://doi.org/10.1016/j.jdiacomp.2005.05.006 
  4. Donath MY, Shoelson SE (2011) Type 2 diabetes as an inflammatory disease. Nat Rev Immunol 11:98-107. https://doi.org/10.1038/nri2925 
  5. Pereira SS, Alvarez-Leite JI (2014) Low-grade inflammation, obesity, and diabetes. Curr Obes Rep 3:422-431. https://doi.org/10.1007/s13679-014-0124-9 
  6. Pop-Busui R, Ang L, Holmes C, Gallagher K, Feldman EL (2016) Inflammation as a therapeutic target for diabetic neuropathies. Curr Diab Rep 16:29. https://doi.org/10.1007/s11892-016-0727-5 
  7. Luc K, Schramm-Luc A, Guzik TJ, Mikolajczyk TP (2019) Oxidative stress and inflammatory markers in prediabetes and diabetes. J Physiol Pharmacol. https://doi.org/10.26402/jpp.2019.6.01 
  8. Preshaw PM, Bissett SM (2019) Periodontitis and diabetes. Br Dent J 227:577-584. https://doi.org/10.1038/s41415-019-0794-5 
  9. Polak D, Shapira L (2018) An update on the evidence for pathogenic mechanisms that may link periodontitis and diabetes. J Clin Periodontol 45:150-166. https://doi.org/10.1111/jcpe.12803 
  10. Brownlee M (2005) The pathobiology of diabetic complications: a unifying mechanism. Diabetes 54:1615-1625. https://doi.org/10.2337/diabetes.54.6.1615 
  11. Kushner I (1988) The acute phase response: an overview. Methods Enzymol 163:373-383. https://doi.org/10.1016/0076-6879(88)63037-0 
  12. Kido J, Bando Y, Bando M, Kajiura Y, Hiroshima Y, Inagaki Y, Murata H, Ikuta T, Kido R, Naruishi K, Funaki M, Nagata T (2015) YKL-40 level in gingival crevicular fiuid from patients with periodontitis and type 2 diabetes. Oral Diseases 21:667-673. https://doi.org/10.1111/odi.12334 
  13. Baeza M, Morales A, Cisterna C, Cavalla F, Jara G, Isamitt Y, Pino P, Gamonal J (2020) Effect of periodontal treatment in patients with periodontitis and diabetes: systematic review and meta-analysis. J Appl Oral Sci 28:e20190248. https://doi.org/10.1590/1678-7757-2019-0248 
  14. Pereira KKY, Jara CM, Antunes GL, Gomes MS, Rosing CK, Cavagni J, Haas AN (2022) Effects of periodontitis and periodontal treatment on systemic inflammatory markers and metabolic profile in obese and non-obese rats. J Periodontol 93:1411-1420. https://doi.org/10.1002/jper.21-0575 
  15. Rathcke CN, Johansen JS, Vestergaard H (2006) YKL-40, a biomarker of inflammation, is elevated in patients with type 2 diabetes and is related to insulin resistance. Inflamm Res 55:53-59. https://doi.org/10.1007/s00011-005-0010-8 
  16. Nielsen AR, Erikstrup C, Johansen JS, Fischer CP, Plomgaard P, Krogh-Madsen R, Taudorf S, Lindegaard B, Pedersen BK (2008) Plasma YKL-40: a BMI-independent marker of type 2 diabetes. Diabetes 57:3078-3082. https://doi.org/10.2337/db08-0182 
  17. Keles ZP, Keles GC, Avci B, Cetinkaya BO, Emingil G (2014) Analysis of YKL-40 acute-phase protein and interleukin-6 levels in periodontal disease. J Periodontol 85:1240-1246. https://doi.org/10.1902/jop.2014.130631 
  18. Mei F, Xie M, Huang X, Long Y, Lu X, Wang X, Chen L (2020) Porphyromonas gingivalis and its systemic impact: current status. Pathogens 9:944. https://doi.org/10.3390/pathogens9110944 
  19. Socransky SS, Haffajee AD, Cugini MA, Smith C, Kent RL Jr (1998) Microbial complexes in subgingival plaque. J Clin Periodontol 25:134-144. https://doi.org/10.1111/j.1600-051x.1998.tb02419.x 
  20. Hajishengallis G, Lamont RJ (2012) Beyond the red complex and into more complexity: the polymicrobial synergy and dysbiosis (PSD) model of periodontal disease etiology. Mol Oral Microbiol 27:409-419. https://doi.org/10.1111/j.2041-1014.2012.00663.x 
  21. Xu W, Zhou W, Wang H, Liang S (2020) Roles of Porphyromonas gingivalis and its virulence factors in periodontitis. Adv Protein Chem Struct Biol 120:45-84. https://doi.org/10.1016/bs.apcsb.2019.12.001 
  22. Nunes JM, Fillis T, Page MJ, Venter C, Lancry O, Kell DB, Windberger U, Pretorius E (2020) Gingipain R1 and lipopolysaccharide from Porphyromonas gingivalis have major effects on blood clot morphology and mechanics. Front Immunol 11:1551. https://doi.org/10.3389/fmmu.2020.01551 
  23. Adams B, Nunes JM, Page MJ, Roberts T, Carr J, Nell TA, Kell DB, Pretorius E (2019) Parkinson's disease: a systemic inflammatory disease accompanied by bacterial infammagens. Front Aging Neurosci 11:210. https://doi.org/10.3389/fnagi.2019.00210 
  24. Dominy SS, Lynch C, Ermini F, Benedyk M, Marczyk A, Konradi A, Nguyen M, Haditsch U, Raha D, Griffin C, Holsinger LJ, Arastu-Kapur S, Kaba S, Lee A, Ryder MI, Potempa B, Mydel P, Hellvard A, Adamowicz K, Hasturk H, Walker GD, Reynolds EC, Faull RLM, Curtis MA, Dragunow M, Potempa J (2019) Porphyromonas gingivalis in Alzheimer's disease brains: Evidence for disease causation and treatment with small-molecule inhibitors. Sci Adv 5:eaau3333. https://doi.org/10.1126/sciadv.aau3333 
  25. Zang L, Maddison LA, Chen W (2018) Zebrafish as a model for obesity and diabetes. Front Cell Develop Biol 6:91. https://doi.org/10.3389/fcell.2018.00091 
  26. Zang L, Shimada Y, Nishimura Y, Tanaka T, Nishimura N (2013) A novel, reliable method for repeated blood collection from aquarium fish. Zebrafish 10:425-432. https://doi.org/10.1089/zeb.2012.0862 
  27. Faillaci F, Milosa F, Critelli RM, Turola E, Schepis F, Villa E (2018) Obese zebrafish: a small fsh for a major human health condition. Animal Model Exp Med 1:255-265. https://doi.org/10.1002/ame2.12042 
  28. Stream A, Madigan CA (2022) Zebrafish: an underutilized tool for discovery in host-microbe interactions. Trends Immunol 43:426-437. https://doi.org/10.1016/j.it.2022.03.011 
  29. Lepiller S, Franche N, Solary E, Chluba J, Laurens V (2009) Comparative analysis of zebrafish nos2a and nos2b genes. Gene 445:58-65. https://doi.org/10.1016/j.gene.2009.05.016 
  30. unal I, Emekli-Alturfan E (2019) Fishing for Parkinson's disease: a review of the literature. J Clin Neurosci 62:1-6. https://doi.org/10.1016/j.jocn.2019.01.015 
  31. Koch BE, Stougaard J, Spaink HP (2015) Keeping track of the growing number of biological functions of chitin and its interaction partners in biomedical research. Glycobiology 25:469-482. https://doi.org/10.1093/glycob/cwv005 
  32. Novoa B, Bowman TV, Zon L, Figueras A (2009) LPS response and tolerance in the zebrafish (Danio rerio). Fish Shellfish Immunol 26:326-331. https://doi.org/10.1016/j.fsi.2008.12.004 
  33. Stockhammer OW, Zakrzewska A, Hegedus Z, Spaink HP, Meijer AH (2009) Transcriptome profiling and functional analyses of the zebrafish embryonic innate immune response to Salmonella infection. J Immunol 182:5641-5653. https://doi.org/10.4049/jimmunol.0900082 
  34. Widziolek M, Prajsnar TK, Tazzyman S, Stafford GP, Potempa J, Murdoch C (2016) Zebrafish as a new model to study effects of periodontal pathogens on cardiovascular diseases. Sci Rep 6:36023. https://doi.org/10.1038/srep36023 
  35. Farrugia C, Stafford GP, Potempa J, Wilkinson RN, Chen Y, Murdoch C, Widziolek M (2021) Mechanisms of vascular damage by systemic dissemination of the oral pathogen Porphyromonas gingivalis. FEBS J 288:1479-1495. https://doi.org/10.1111/febs.15486 
  36. Wilensky A, Potempa J, Houri-Haddad Y, Shapira L (2017) Vaccination with recombinant RgpA peptide protects against Porphyromonas gingivalis-induced bone loss. J Periodontal Res 52:285-291. https://doi.org/10.1111/jre.12393 
  37. Kose K, Gunduz G, Beler M, Emekli-Alturfan E (2022) Inflammatory gene expression in response to gingipain in zebrafish. J Clin Sci (Abstracts), The 26th International Congress of Turkish Dental Association, September 8-11, (Suppplements). 11:596-597 
  38. Beler M, Cansiz D, unal I, ustundag uV, Dandin E, Ak E, Alturfan AA, Emekli-Alturfan E (2022) Bisphenol A reveals its obesogenic effects through disrupting glucose tolerance, oxidant-antioxidant balance, and modulating inflammatory cytokines and fibroblast growth factor in zebrafish. Toxicol Ind Health 38:19-28. https://doi.org/10.1177/07482337211054372 
  39. Dandin E, ustundag uV, unal I, Ates-Kalkan PS, Cansiz D, Beler M, Ak E, Alturfan AA, Emekli-Alturfan E (2022) Stevioside ameliorates hyperglycemia and glucose intolerance, in a diet-induced obese zebrafish model, through epigenetic, oxidative stress and inflammatory regulation. Obes Res Clin Pract 16:23-29. https://doi.org/10.1016/j.orcp.2022.01.002 
  40. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265-275. https://doi.org/10.1016/s0021-9258(19)52451-6 
  41. Yagi K (1984) Assay for blood plasma or serum. Methods Enzymol 105:328-331. https://doi.org/10.1016/s0076-6879(84)05042-4 
  42. Miranda KM, Espey MG, Wink DA (2001) A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide 5:62-71. https://doi.org/10.1006/niox.2000.0319 
  43. Mylroie AA, Collins H, Umbles C, Kyle J (1986) Erythrocyte superoxide dismutase activity and other parameters of copper status in rats ingesting lead acetate. Toxicol Appl Pharmacol 82:512-520. https://doi.org/10.1016/0041-008x(86)90286-3 
  44. Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases. the first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130-7139. https://doi.org/10.1016/s0021-9258(19)42083-8 
  45. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402-408. https://doi.org/10.1006/meth.2001.1262 
  46. Mouri M, Badireddy M (2022) Hyperglycemia. In: StatPearls [Internet]. StatPearls Publishing, Treasure Island (FL). 2023 Jan-. https://pubmed.ncbi.nlm.nih.gov/28613650 
  47. Heckler K, Kroll J (2017) Zebrafish as a model for the study of microvascular complications of diabetes and their mechanisms. Int J Mol Sci 18:2002. https://doi.org/10.3390/ijms18092002 
  48. Graves DT, Ding Z, Yang Y (2020) The impact of diabetes on periodontal diseases. Periodontol 82:214-224. https://doi.org/10.1111/prd.12318 
  49. Engebretson S, Chertog R, Nichols A, Hey-Hadavi J, Celenti R, Grbic J (2007) Plasma levels of tumour necrosis factor-alpha in patients with chronic periodontitis and type 2 diabetes. J Clin Periodontol 34:18-24. https://doi.org/10.1111/j.1600-051X.2006.01017.x 
  50. Mohamed HG, Idris SB, Ahmed MF, Astrom AN, Mustafa K, Ibrahim SO, Mustafa M (2015) Influence of type 2 diabetes on local production of inflammatory molecules in adults with and without chronic periodontitis: a cross-sectional study. BMC Oral Health 15:86. https://doi.org/10.1186/s12903-015-0073-z 
  51. Jiang ZL, Cui YQ, Gao R, Li Y, Fu ZC, Zhang B, Guan CC (2013) Study of TNF-α, IL-1β and LPS levels in the gingival crevicular fluid of a rat model of diabetes mellitus and periodontitis. Dis Markers 34:295-304. https://doi.org/10.3233/dma-130974 
  52. Tizaoui K, Yang JW, Lee KH, Kim JH, Kim M, Yoon S, Jung Y, Park JB, An K, Choi H, Song D, Jung H, Ahn S, Yuh T, Choi HM, Ahn JH, Kim Y, Jee S, Lee H, Jin S, Kang JG, Koo B, Lee JY, Min KM, Yoo W, Rhyu HJ, Yoon Y, Lee MH, Kim SE, Hwang J, Koyanagi A, Jacob L, Park S, Shin JI, Smith L (2022) The role of YKL-40 in the pathogenesis of autoimmune diseases: a comprehensive review. Int J Biol Sci 18:3731-3746. https://doi.org/10.7150/ijbs.67587 
  53. Koch BE, Stougaard J, Spaink HP (2014) Spatial and temporal expression patterns of chitinase genes in developing zebrafish embryos. Gene Expr Patterns 14:69-77. https://doi.org/10.1016/j.gep.2014.01.001 
  54. Seo YH, Shin HY (2021) Relationship between hs-CRP and HbA1c in diabetes mellitus patients: 2015-2017 Korean National Health and nutrition examination survey. Chonnam Med J 57:62-67. https://doi.org/10.4068/cmj.2021.57.1.62 
  55. Pfutzner A, Forst T (2006) High-sensitivity C-reactive protein as cardiovascular risk marker in patients with diabetes mellitus. Diabetes Technol Ther 8:28-36. https://doi.org/10.1089/dia.2006.8.28 
  56. Das U (2006) Clinical laboratory tools to diagnose inflammation. Adv Clin Chem 41:189-229. https://doi.org/10.1016/S0065-2423(05)41006-9 
  57. Luc G, Bard JM, Juhan-Vague I, Ferrieres J, Evans A, Amouyel P, Arveiler D, Fruchart JC, Ducimetiere P (2003) C-reactive protein, interleukin-6, and fibrinogen as predictors of coronary heart disease: the PRIME Study. Arterioscler Thromb Vasc Biol 23:1255-1261. https://doi.org/10.1161/01.Atv.0000079512.66448.1d 
  58. Ridker PM, Cushman M, Stampfer MJ, Tracy RP, Hennekens CH (1997) Inflammation, aspirin, and the risk of cardiovascular disease in apparently healthy men. N Engl J Med 336:973-979. https://doi.org/10.1056/nejm199704033361401 
  59. Engstrom G, Hedblad B, Stavenow L, Lind P, Janzon L, Lindgarde F (2003) Inflammation-sensitive plasma proteins are associated with future weight gain. Diabetes 52:2097-2101. https://doi.org/10.2337/diabetes.52.8.2097 
  60. Das UN (2001) Is obesity an inflammatory condition? Nutrition 17:953-966. https://doi.org/10.1016/s0899-9007(01)00672-4 
  61. De A, Puttannavar R, Rahman F, Adak A, Sahoo R, Prakash BSR (2018) Estimation of salivary and serum alkaline phosphatase level as a diagnostic marker in type-2 diabetes mellitus with periodontal health and disease: a clinico-biochemical study. J Oral Maxillofac Pathol 22:445. https://doi.org/10.4103/jomfp.JOMFP_212_18 
  62. Khansari N, Shakiba Y, Mahmoudi M (2009) Chronic inflammation and oxidative stress as a major cause of age-related diseases and cancer. Recent Pat Inflamm Allergy Drug Discov 3:73-80. https://doi.org/10.2174/187221309787158371 
  63. Kim SJ, Ha MS, Choi EY, Choi JI, Choi IS (2004) Prevotella intermedia lipopolysaccharide stimulates release of nitric oxide by inducing expression of inducible nitric oxide synthase. J Periodontal Res 39:424-431. https://doi.org/10.1111/j.1600-0765.2004.00757.x 
  64. Skaleric U, Gaspirc B, McCartney-Francis N, Masera A, Wahl SM (2006) Proinflammatory and antimicrobial nitric oxide in gingival fluid of diabetic patients with periodontal disease. Infect Immun 74:7010-7013. https://doi.org/10.1128/iai.00071-06 
  65. Bastos AS, Graves DT, Loureiro AP, Rossa Junior C, Abdalla DS, Faulin Tdo E, Olsen Camara N, Andriankaja OM, Orrico SR (2012) Lipid peroxidation is associated with the severity of periodontal disease and local inflammatory markers in patients with type 2 diabetes. J Clin Endocrinol Metab 97:E1353-E1362. https://doi.org/10.1210/jc.2011-3397 
  66. K P, Kumar JA, Rai S, Shetty SK, Rai T, Shrinidhi, Begum M, Md S (2013) Predictive value of serum sialic Acid in type-2 diabetes mellitus and its complication (nephropathy). J Clin Diagn Res 7:2435-2437. https://doi.org/10.7860/jcdr/2013/6210.3567 
  67. Shivananda Nayak B, Duncan H, Lalloo S, Maraj K, Matmungal V, Matthews F, Prajapati B, Samuel R, Sylvester P (2008) Correlation of microalbumin and sialic acid with anthropometric variables in type 2 diabetic patients with and without nephropathy. Vasc Health Risk Manag 4:243-247. https://doi.org/10.2147/vhrm.2008.04.01.243 
  68. Sabzwari M, Majeed M, Riaz M, Umair M (2006) Serum sialic acid concentration and type II diabetes mellitus. Professional Med J 13:508-510. https://doi.org/10.29309/TPMJ/2006.13.04.4913 
  69. Oktay S, Bal OO, Kuru L, Yarat A, Noyan U (2020) Is sialic acid a promising marker for periodontal diseases? Niger J Clin Pract 23:603-609. https://doi.org/10.4103/njcp.njcp_499_19 
  70. Pavlov VA, Tracey KJ (2006) Controlling inflammation: the cholinergic anti-inflammatory pathway. Biochem Soc Trans 34:1037-1040. https://doi.org/10.1042/bst0341037 
  71. Das UN (2007) Acetylcholinesterase and butyrylcholinesterase as possible markers of low-grade systemic inflammation. Med Sci Monit 13:RA214-RA221. https://doi.org/10.12659/MSM.940519