DOI QR코드

DOI QR Code

Pelargonium sidoides extract mediates nephrotoxicity through mitochondrial malfunction and cytoskeleton destabilization

  • Ju Young Lee (Animal Model Research Group, Korea Institute of Toxicology) ;
  • JuKyung Lee (Department of Medical IT Convergence, Kumoh National Institute of Technology) ;
  • Sung Ho Lee (WooGene B&G Co.,Ltd.) ;
  • Jeong Ho Hwang (Animal Model Research Group, Korea Institute of Toxicology) ;
  • Han Na Suh (Animal Model Research Group, Korea Institute of Toxicology)
  • Received : 2023.02.21
  • Accepted : 2023.04.19
  • Published : 2023.10.15

Abstract

We investigated the cytotoxic effect of Pelargonium sidoides extract on Madin-Darby canine kidney (MDCK) cells. P. sidoides extract decreased the cell viability in a dose dependent manner (>0.2%). The extract of P. sidoides decreased the mitochondrial action potential, increased the number of reactive oxygen species (ROS) inside the cell, and caused nicotinamide adenine dinucleotide hydride (NADH) to be released, all of which are signs of mitochondrial dysfunction. The results of unbiased mRNA sequencing showed that 0.3% P. sidoides extract upregulates the apoptosis-related gene (BBC3). This finding was supported by immunoblot analysis of apoptosis signal pathways, which included Bcl-2, Bax, cytochrome C (CytC), cleaved caspase 3 (CC3), cleaved caspase 7 (CC7), cleaved caspase 9 (CC9) and cleaved PARP (CP). It is interesting to note that the elevated levels of Bax, CytC, CC3, CC7, and CC9, as well as CP, were suppressed by N-acetyl-L-cysteine (NAC) pretreatment, which points to ROS-mediated apoptosis. The small GTPases, RhoA, and Rac1/cdc42-GTP-bound active form were all lowered when P. sidoides extract was used. Also, RhoA-related cytoskeleton signals (ROCK, p-LIMK1/2, p-cofilin) and Rac1/cdc42-related signals (N-WASP, WAVE-2) were inhibited by P. sidoides extract. NAC or RhoA/Rac1/cdc42 activator pretreatment reduced P. sidoides extract-induced actin destabilization. In this work, P. sidoides extract promotes apoptosis by causing mitochondrial dysfunction and cytoskeleton disassembly.

Keywords

Acknowledgement

This work was supported by the National Research Council of Science & Technology (NST) grant by the Korea government (MSIT) (grant no. CRC21021).

References

  1. Matthys H, Eisebitt R, Seith B, Heger M (2003) Efficacy and safety of an extract of Pelargonium sidoides (EPs 7630) in adults with acute bronchitis. A randomised, double-blind, placebo-controlled trial. Phytomedicine 10(Suppl 4):7-17. https://doi.org/10.1078/1433-187x-00308 
  2. Bladt S, Wagner H (2007) From the Zulu medicine to the european phytomedicine Umckaloabo. Phytomedicine 6:2-4. https://doi.org/10.1016/j.phymed.2006.11.030 
  3. Dubash AD, Guilluy C, Srougi MC, Boulter E, Burridge K, Garcia-Mata R (2011) The small GTPase RhoA localizes to the nucleus and is activated by Net1 and DNA damage signals. PLoS ONE 6:e17380. https://doi.org/10.1371/journal.pone.0017380 
  4. Schnitzler P, Schneider S, Stintzing FC, Carle R, Reichling J (2008) Efficacy of an aqueous Pelargonium sidoides extract against herpesvirus. Phytomedicine 15:1108-1116. https://doi.org/10.1016/j.phymed.2008.06.009 
  5. Wittschier N, Faller G, Hensel A (2007) An extract of Pelargonium sidoides (EPs 7630) inhibits in situ adhesion of Helicobacter pylori to human stomach. Phytomedicine 14:285-288. https://doi.org/10.1016/j.phymed.2006.12.008 
  6. Conrad A, Hansmann C, Engels I, Daschner FD, Frank U (2007) Extract of Pelargonium sidoides (EPs 7630) improves phagocytosis, oxidative burst, and intracellular killing of human peripheral blood phagocytes in vitro. Phytomedicine 6:46-51. https://doi.org/10.1016/j.phymed.2006.11.016 
  7. Kolodziej H, Kayser O, Radtke OA, Kiderlen AF, Koch E (2003) Pharmacological profile of extracts of Pelargonium sidoides and their constituents. Phytomedicine 4:18-24. https://doi.org/10.1078/1433-187x-00307 
  8. Chuchalin AG, Berman B, Lehmacher W (2005) Treatment of acute bronchitis in adults with a pelargonium sidoides preparation (EPs 7630): a randomized, double-blind, placebo-controlled trial. Explore (NY) 1:437-445. https://doi.org/10.1016/j.explore.2005.08.009 
  9. Izzedine H, Launay-Vacher V, Isnard-Bagnis C, Deray G (2003) Drug-induced Fanconi's syndrome. Am J Kidney Dis 41:292-309. https://doi.org/10.1053/ajkd.2003.50037 
  10. Perazella MA (2009) Renal vulnerability to drug toxicity. Clin J Am Soc Nephrol 4:1275-1283. https://doi.org/10.2215/CJN.02050309 
  11. Dekant W (1996) Biotransformation and renal processing of nephrotoxic agents. Arch Toxicol Suppl 18:163-172. https://doi.org/10.1007/978-3-642-61105-6_17 
  12. Li Y, Zheng Y, Zhang K, Ying JY, Zink D (2012) Effects of quantum dots on different renal proximal tubule cell models and on gel-free renal tubules generated in vitro. Nanotoxicology 6:121-133. https://doi.org/10.3109/17435390.2011.562326 
  13. Lin Z, Will Y (2012) Evaluation of drugs with specific organ toxicities in organ-specific cell lines. Toxicol Sci 126:114-127. https://doi.org/10.1093/toxsci/kfr339 
  14. Schoetz K, Erdelmeier C, Germer S, Hauer H (2008) A detailed view on the constituents of EPs 7630. Planta Med 74:667-674. https://doi.org/10.1055/s-2008-1074515 
  15. Lee J, Suh HN, Ahn S, Park HB, Lee JY, Kim HJ, Kim SH (2022) Disposable electrocatalytic sensor for whole blood NADH monitoring. Sci Rep 12:16716. https://doi.org/10.1038/s41598-022-20995-x 
  16. Pendergrass W, Wolf N, Poot M (2004) Efficacy of MitoTracker Green and CMXrosamine to measure changes in mitochondrial membrane potentials in living cells and tissues. Cytometry A 61:162-169. https://doi.org/10.1002/cyto.a.20033 
  17. Flatau G, Lemichez E, Gauthier M, Chardin P, Paris S, Fiorentini C, Boquet P (1997) Toxin-induced activation of the G protein p21 rho by deamidation of glutamine. Nature 387:729-733. https://doi.org/10.1038/42743 
  18. Lerm M, Selzer J, Hofmeyer A, Rapp UR, Aktories K, Schmidt G (1999) Deamidation of Cdc42 and rac by Escherichia coli cytotoxic necrotizing factor 1: activation of c-Jun N-terminal kinase in HeLa cells. Infect Immun 67:496-503. https://doi.org/10.1128/IAI.67.2.496-503.1999 
  19. Schmidt G, Sehr P, Wilm M, Selzer J, Mann M, Aktories K (1997) Gln 63 of rho is deamidated by Escherichia coli cytotoxic necrotizing factor-1. Nature 387:725-729. https://doi.org/10.1038/42735 
  20. Baars EW, Belt-van Zoen E, Breitkreuz T, Martin D, Matthes H, von Schoen-Angerer T, Soldner G, Vagedes J, van Wietmarschen H, Patijn O, Willcox M, von Flotow P, Teut M, von Ammon K, Thangavelu M, Wolf U, Hummelsberger J, Nicolai T, Hartemann P, Szoke H, McIntyre M, van der Werf ET, Huber R (2020) Corrigendum to "The Contribution of Complementary and Alternative Medicine to Reduce Antibiotic Use: A Narrative Review of Health Concepts, Prevention, and Treatment Strategies." Evid Based Complement Alternat Med 2020:7089287. https://doi.org/10.1155/2020/7089287 
  21. Brendler T, van Wyk BE (2008) A historical, scientific and commercial perspective on the medicinal use of Pelargonium sidoides (Geraniaceae). J Ethnopharmacol 119:420-433. https://doi.org/10.1016/j.jep.2008.07.037 
  22. Bao Y, Gao Y, Koch E, Pan X, Jin Y, Cui X (2015) Evaluation of pharmacodynamic activities of EPs(R) 7630, a special extract from roots of Pelargonium sidoides, in animals models of cough, secretolytic activity and acute bronchitis. Phytomedicine 22:504-509. https://doi.org/10.1016/j.phymed.2015.03.004 
  23. Goodman RP, Markhard AL, Shah H, Sharma R, Skinner OS, Clish CB, Deik A, Patgiri A, Hsu YH, Masia R, Noh HL, Suk S, Goldberger O, Hirschhorn JN, Yellen G, Kim JK, Mootha VK (2020) Hepatic NADH reductive stress underlies common variation in metabolic traits. Nature 583:122-126. https://doi.org/10.1038/s41586-020-2337-2 
  24. Katsyuba E, Auwerx J (2017) Modulating NAD(+) metabolism, from bench to bedside. EMBO J 36:2670-2683. https://doi.org/10.15252/embj.201797135 
  25. Xiao W, Loscalzo J (2020) Metabolic responses to reductive stress. Antioxid Redox Signal 32:1330-1347. https://doi.org/10.1089/ars.2019.7803 
  26. Zhao Y, Zhang Z, Zou Y, Yang Y (2018) Visualization of Nicotine Adenine Dinucleotide Redox Homeostasis with genetically encoded fluorescent sensors. Antioxid Redox Signal 28:213-229. https://doi.org/10.1089/ars.2017.7226 
  27. Diguet N, Trammell SAJ, Tannous C, Deloux R, Piquereau J, Mougenot N, Gouge A, Gressette M, Manoury B, Blanc J, Breton M, Decaux JF, Lavery GG, Baczko I, Zoll J, Garnier A, Li Z, Brenner C, Mericskay M (2018) Nicotinamide Riboside preserves cardiac function in a mouse model of dilated cardiomyopathy. Circulation 137:2256-2273. https://doi.org/10.1161/CIRCULATIONAHA.116.026099 
  28. Lee CF, Chavez JD, Garcia-Menendez L, Choi Y, Roe ND, Chiao YA, Edgar JS, Goo YA, Goodlett DR, Bruce JE, Tian R (2016) Normalization of NAD + redox balance as a therapy for heart failure. Circulation 134:883-894. https://doi.org/10.1161/CIRCULATIONAHA.116.022495 
  29. Yoshino J, Baur JA, Imai SI (2018) NAD(+) intermediates: the Biology and therapeutic potential of NMN and NR. Cell Metab 27:513-528. https://doi.org/10.1016/j.cmet.2017.11.002 
  30. Szatrowski TP, Nathan CF (1991) Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res 51:794-798 
  31. Ames BN, Shigenaga MK, Hagen TM (1993) Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci U S A 90:7915-7922. https://doi.org/10.1073/pnas.90.17.7915 
  32. Goel A, Chhabra R, Ahmad S, Prasad AK, Parmar VS, Ghosh B, Saini N (2012) DAMTC regulates cytoskeletal reorganization and cell motility in human lung adenocarcinoma cell line: an integrated proteomics and transcriptomics approach. Cell Death Dis 3:e402. https://doi.org/10.1038/cddis.2012.141 
  33. Arber S, Barbayannis FA, Hanser H, Schneider C, Stanyon CA, Bernard O, Caroni P (1998) Regulation of actin dynamics through phosphorylation of cofilin by LIM-kinase. Nature 393:805-809. https://doi.org/10.1038/31729 
  34. Bamburg JR, McGough A, Ono S (1999) Putting a new twist on actin: ADF/cofilins modulate actin dynamics. Trends Cell Biol 9:364-370. https://doi.org/10.1016/s0962-8924(99)01619-0 
  35. Clark EA, King WG, Brugge JS, Symons M, Hynes RO (1998) Integrin-mediated signals regulated by members of the rho family of GTPases. J Cell Biol 142:573-586. https://doi.org/10.1083/jcb.142.2.573 
  36. Ishizaki T, Naito M, Fujisawa K, Maekawa M, Watanabe N, Saito Y, Narumiya S (1997) p160ROCK, a rho-associated coiled-coil forming protein kinase, works downstream of rho and induces focal adhesions. FEBS Lett 404:118-124. https://doi.org/10.1016/s0014-5793(97)00107-5 
  37. Tomasevic N, Jia Z, Russell A, Fujii T, Hartman JJ, Clancy S, Wang M, Beraud C, Wood KW, Sakowicz R (2007) Differential regulation of WASP and N-WASP by Cdc42, Rac1, nck, and PI(4,5)P2. Biochemistry 46:3494-3502. https://doi.org/10.1021/bi062152y 
  38. Chen XM, Huang BQ, Splinter PL, Orth JD, Billadeau DD, McNiven MA, LaRusso NF (2004) Cdc42 and the actin-related protein/neural Wiskott-Aldrich syndrome protein network mediate cellular invasion by Cryptosporidium parvum. Infect Immun 72:3011-3021. https://doi.org/10.1128/IAI.72.5.3011-3021.2004