Acknowledgement
The authors thank Miss Jin Hyang Hwang, the animal technician, for directing animal care and use at the Laboratory Animal Resources Center at Pusan National University.
References
- Vethaak AD, Legler J (2021) Microplastics and human health. Science 371:672-674. https://doi.org/10.1126/science.abe5041
- Park JW, Lee SJ, Hwang DY, Seo S (2020) Recent purification technologies and human health risk assessment of microplastics. Materials (Basel) 13:5196. https://doi.org/10.3390/ma13225196
- Yong CQY, Valiyaveettil S, Tang BL (2020) Toxicity of microplastics and nanoplastics in mammalian systems. Int J Environ Res Public Health 17:1509. https://doi.org/10.3390/ijerph17051509
- Prietl B, Meindl C, Roblegg E, Pieber TR, Lanzer G, Frohlich E (2014) Nano-sized and micro-sized polystyrene particles affect phagocyte function. Cell Biol Toxicol 30:1-16. https://doi.org/10.1007/s10565-013-9265-y
- Schirinzi GF, Perez-Pomeda I, Sanchis J, Rossini C, Farre M, Barcelo D (2017) Cytotoxic effects of commonly used nanomaterials and microplastics on cerebral and epithelial human cells. Environ Res 159:579-587. https://doi.org/10.1016/j.envres.2017.08.043
- Wu B, Wu X, Liu S, Wang Z, Chen L (2019) Size-dependent effects of polystyrene microplastics on cytotoxicity and efflux pump inhibition in human Caco-2 cells. Chemosphere 221:333-341. https://doi.org/10.1016/j.chemosphere.2019.01.056
- Hwang J, Choi D, Han S, Choi J, Hong J (2019) An assessment of the toxicity of polypropylene microplastics in human derived cells. Sci Total Environ 684:657-669. https://doi.org/10.1016/j.scitotenv.2019.05.071
- Dong CD, Chen CW, Chen YC, Chen HH, Lee JS, Lin CH (2020) Polystyrene microplastic particles: in vitro pulmonary toxicity assessment. J Hazard Mater 385:121575. https://doi.org/10.1016/j.jhazmat.2019.121575
- Xu M, Halimu G, Zhang Q, Song Y, Fu X, Li Y, Li Y, Zhang H (2019) Internalization and toxicity: a preliminary study of effects of nanoplastic particles on human lung epithelial cell. Sci Total Environ 694:133794. https://doi.org/10.1016/j.scitotenv.2019.133794
- Lim SL, Ng CT, Zou L, Lu Y, Chen J, Bay BH, Shen HM, Ong CN (2019) Targeted metabolomics reveals differential biological effects of nanoplastics and nanoZnO in human lung cells. Nanotoxicology 13:1117-1132. https://doi.org/10.1080/17435390.2019.1640913
- Poma A, Vecchiotti G, Colafarina S, Zarivi O, Aloisi M, Arrizza L, Chichiricco G, Carlo PD (2019) In vitro genotoxicity of polystyrene nanoparticles on the human fibroblast Hs27 cell line. Nanomaterials (Basel) 9:1299. https://doi.org/10.3390/nano9091299
- Magri D, Sanchez-Moreno P, Caputo G, Gatto F, Veronesi M, Bardi G, Catelani T, Guarnieri D, Athanassiou A, Pompa PP, Fragouli D (2018) Laser ablation as a versatile tool to mimic polyethylene terephthalate nanoplastic pollutants: characterisation and toxicology assessment. ACS Nano 12:7690-7700. https://doi.org/10.1021/acsnano.8b01331
- Stock V, Bohmert L, Lisicki E, Block R, Cara-Carmona J, Pack LK, Selb R, Lichtenstein D, Voss L, Henderson CJ, Zabinsky E, Sieg H, Braeuning A, Lampen A (2019) Uptake and effects of orally ingested polystyrene microplastic particles in vitro and in vivo. Arch Toxicol 93:1817-1833. https://doi.org/10.1007/s00204-019-02478-7
- Hesler M, Aengenheister L, Ellinger B, Drexel R, Straskraba S, Jost C, Wagner S, Meier F, von Briesen H, Buchel C, Wick P, Buerki-Thurnherr T, Kohl Y (2019) Multi-endpoint toxicological assessment of polystyrene nano- and microparticles in different biological models in vitro. Toxicol In Vitro 61:104610. https://doi.org/10.1016/j.tiv.2019.104610
- Deng Y, Zhang Y, Lemos B, Ren H (2017) Tissue accumulation of microplastics in mice and biomarker responses suggest widespread health risks of exposure. Sci Rep 7:46687. https://doi.org/10.1038/srep46687
- Deng Y, Zhang Y, Qiao R, Bonilla MM, Yang X, Ren H, Lemos B (2018) Evidence that microplastics aggravate the toxicity of organophosphorus fame retardants in mice (Mus musculus). J Hazard Mater 357:348-354. https://doi.org/10.1016/j.jhazmat.2018.06.017
- Li B, Ding Y, Cheng X, Sheng D, Xu Z, Rong Q, Wu Y, Zhao H, Ji X, Zhang Y (2020) Polyethylene microplastics affect the distribution of gut microbiota and inflammation development in mice. Chemosphere 244:125492. https://doi.org/10.1016/j.chemosphere.2019.125492
- Lu L, Wan Z, Luo T, Fu Z, Jin Y (2018) Polystyrene microplastics induce gut microbiota dysbiosis and hepatic lipid metabolism disorder in mice. Sci Total Environ 631-632:449-458. https://doi.org/10.1016/j.scitotenv.2018.03.051
- Jin Y, Lu L, Tu W, Luo T, Fu Z (2019) INPacts of polystyrene microplastic on the gut barrier, microbiota and metabolism of mice. Sci Total Environ 649:308-317. https://doi.org/10.1016/j.scitotenv.2018.08.353
- Yang YF, Chen CY, Lu TH, Liao CM (2019) Toxicity-based toxicokinetic/toxicodynamic assessment for bioaccumulation of polystyrene microplastics in mice. J Hazard Mater 366:703-713. https://doi.org/10.1016/j.jhazmat.2018.12.048
- Luo T, Wang C, Pan Z, Jin C, Fu Z, Jin Y (2019) Maternal polystyrene microplastic exposure during gestation and lactation altered metabolic homeostasis in the dams and their F1 and F2 offspring. Environ Sci Technol 53:10978-10992. https://doi.org/10.1021/acs.est.9b03191
- Rafee M, Dargahi L, Eslami A, Beirami E, Jahangiri-Rad M, Sabour S, Amereh F (2018) Neurobehavioral assessment of rats exposed to pristine polystyrene nanoplastics upon oral exposure. Chemosphere 193:745-753. https://doi.org/10.1016/j.chemosphere.2017.11.076
- Amato-Lourenco LF, Galvao LDS, de Weger LA, Hiemstra PS, Vijver MG, Mauad T (2020) An emerging class of air pollutants: potential effects of microplastics to respiratory human health? Sci total environ 749:141676. https://doi.org/10.1016/j.scitotenv.2020.141676
- Lim D, Jeong J, Song KS, Sung JH, Oh SM, Choi J (2021) Inhalation toxicity of polystyrene micro(nano)plastics using modified OECD TG 412. Chemosphere 262:128330. https://doi.org/10.1016/j.chemosphere.2020.128330
- Liu X, Zhao Y, Dou J, Hou Q, Cheng J, Jiang X (2022) Bioeffects of inhaled nanoplastics on neurons and alteration of animal behaviors through deposition in the brain. Nano Lett 22:1091-1099. https://doi.org/10.1021/acs.nanolett.1c04184
- Li Y, Shi T, Li X, Sun H, Xia X, Ji X, Zhang J, Liu M, Lin Y, Zhang R, Zheng Y, Tang J (2022) Inhaled tire-wear microplastic particles induced pulmonary fibrotic injury via epithelial cytoskeleton rearrangement. Environ Int 164:107257. https://doi.org/10.1016/j.envint.2022.107257
- Li X, Zhang T, Lv W, Wang H, Chen H, Xu Q, Cai H, Dai J (2022) Intratracheal administration of polystyrene microplastics induces pulmonary fibrosis by activating oxidative stress and Wnt/β-catenin signaling pathway in mice. Ecotoxicol Environ Saf 232:113238. https://doi.org/10.1016/j.ecoenv.2022.113238
- Fan Z, Xiao T, Luo H, Chen D, Lu K, Shi W, Sun C, Bian Q (2022) A study on the roles of long non-coding RNA and circular RNA in the pulmonary injuries induced by polystyrene microplastics. Environ Int 163:107223. https://doi.org/10.1016/j.envint.2022.107223
- Park JW, Lee SJ, Hwang DY, Seo S (2021) Removal of microplastics via tannic acid-mediated coagulation and in vitro impact assessment. RSC Adv 11:3556-3566. https://doi.org/10.1039/d0ra09645h
- Wang G, Zheng X, Tang J, Niu Y, Dai Y, Duan H, Zheng Y (2018) LIN28B/let-7 axis mediates pulmonary inflammatory response induced by diesel exhaust particle exposure in mice. Toxicol Lett 299:1-10. https://doi.org/10.1016/j.toxlet.2018.08.019
- Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402-408. https://doi.org/10.1006/meth.2001.1262
- Domenech J, Marcos R (2021) Pathways of human exposure to microplastics, and estimation of the total burden. Curr Opin Food Sci 39:144-151. https://doi.org/10.1016/j.cofs.2021.01.004
- Prata JC, da Costa JP, Lopes I, Duartea AC, Rocha-Santosa T (2020) Environmental exposure to microplastics: an overview on possible human health effects. Sci Total Environ 702:134455. https://doi.org/10.1016/j.scitotenv.2019.134455
- Moldoveanu B, Otmishi P, Jani P, Walker J, Sarmiento X, Guardiola J, Saad M, Yu J (2009) Inflammatory mechanisms in the lung. J Inflamm Res 2:1-11. https://doi.org/10.2147/JIR.S4385
- Zuo L, Wijegunawardana D (2021) Redox role of ROS and inflammation in pulmonary diseases. Adv Exp Med Biol 1304:187-204. https://doi.org/10.1007/978-3-030-68748-9_11
- Meyer KC (2017) Pulmonary fibrosis, part I: epidemiology, pathogenesis, and diagnosis. Expert Rev Respir Med 11:343-359. https://doi.org/10.1080/17476348.2017.1312346
- Galioto F, Palmucci S, Astuti GM, Vancheri A, Distefano G, Tiralongo F, Libra A, Cusumano G, Basile A, Vancheri C (2020) Complications in idiopathic pulmonary fibrosis: focus on their clinical and radiological features. Diagnostics (Basel) 10:450. https://doi.org/10.3390/diagnostics10070450
- Hung CF (2020) Origin of myofibroblasts in lung fibrosis. Curr Tissue Microenviron Rep 1:155-162. https://doi.org/10.1007/s43152-020-00022-9
- Micallef L, Vedrenne N, Billet F, Coulomb B, Darby IA, Desmouliere A (2012) The myofibroblast, multiple origins for major roles in normal and pathological tissue repair. Fibrogenesis Tissue Repair 5:S5. https://doi.org/10.1186/1755-1536-5-S1-S5
- Giacomelli C, Piccarducci R, Marchetti L, Romei C, Martini C (2021) Pulmonary fibrosis from molecular mechanisms to therapeutic interventions: lessons from post-COVID-19 patients. Biochem Pharmacol 193:114812. https://doi.org/10.1016/j.bcp.2021.114812
- Butte A (2002) The use and analysis of microarray data. Nat Rev Drug Discov 1:951-960. https://doi.org/10.1038/nrd961
- Lee SH, Jee SW, Hwang DY, Kang JK (2020) Characterisation of changes in global gene expression in the hearts and kidneys of transgenic mice overexpressing human angiotensin-converting enzyme 2. Lab Anim Res 36:23. https://doi.org/10.1186/s42826-020-00056-y
- Choi JY, Kim SH, Kim JE, Park JW, Kang MJ, Choi HJ, Bae SJ, Lee JH, Jung YS, Hwang DY (2019) Four amino acids as serum biomarkers for anti-asthma effects in the ovalbumin-induced asthma mouse model treated with extract of Asparagus cochinchinensis. Lab Anim Res 35:32. https://doi.org/10.1186/s42826-019-0033-x
- Kim SH, Lee W, Kwon D, Lee S, Son SW, Seo MS, Kim KS, Lee YH, Kim S, Jung YS (2020) Metabolomic analysis of the liver of a dextran sodium sulfate-induced acute colitis mouse model: implications of the gut-liver connection. Cells 9:341. https://doi.org/10.3390/cells9020341
- Yang S, Cheng Y, Chen Z, Liu T, Yin L, Pu Y, Liang G (2021) In vitro evaluation of nanoplastics using human lung epithelial cells, microarray analysis and co-culture model. Ecotoxicol Environ Saf 226:112837. https://doi.org/10.1016/j.ecoenv.2021.112837
- Kwon S, Kim D, Kim HY, Jeong SW, Lee SG, Kim HC, Lee YJ, Kwon MK, Hwang JS, Han JE, Park JK, Lee SJ, Choi SK (2022) Microglial phagocytosis of polystyrene microplastics results in immune alteration and apoptosis in vitro and in vivo. Sci Total Environ 807:150817. https://doi.org/10.1016/j.scitotenv.2021.150817
- Zaheer J, Kim H, Ko IO, Jo EK, Choi EJ, Lee HJ, Shim I, Woo H, Choi J, Kim GH, Kim JS (2022) Pre/post-natal exposure to microplastic as a potential risk factor for autism spectrum disorder. Environ Int 161:107121. https://doi.org/10.1016/j.envint.2022.107121
- Beckmann AM, Wilce PA (1997) Egr transcription factors in the nervous system. Neurochem Int 31:477-510. https://doi.org/10.1016/s0197-0186(96)00136-2
- Yan SF, Fujita T, Lu J, Okada K, Zou YS, Mackman N, Pinsky DJ, Stern DM (2000) Egr-1, a master switch coordinating upregulation of divergent gene families underlying ischemic stress. Nat Med 6:1355-1361. https://doi.org/10.1038/82168
- McMahon SB, Monroe JG (1996) The role of early growth response gene 1 (egr-1) in regulation of the immune response. J Leukoc Biol 60:159-166. https://doi.org/10.1002/jlb.60.2.159
- Duclot F, Kabbaj M (2017) The role of early growth response 1 (EGR1) in brain plasticity and neuropsychiatric disorders. Front Behav Neurosci 11:35. https://doi.org/10.3389/fnbeh.2017.00035
- DeMaria S, Ngai J (2010) The cell biology of smell. J Cell Biol 191:443-452. https://doi.org/10.1083/jcb.201008163
- Firestein S (2001) How the olfactory system makes sense of scents. Nature 413:211-218. https://doi.org/10.1038/35093026
- Fleischer J, Breer H, Strotmann J (2009) Mammalian olfactory receptors. Front Cell Neurosci 3:9. https://doi.org/10.3389/neuro.03.009.2009