DOI QR코드

DOI QR Code

Non-Invasive Sex Determination of Asiatic Black Bear (Ursus thibetanus) via Sex-Specific Amplification of the Amelogenin Gene

  • Received : 2023.09.25
  • Accepted : 2023.10.17
  • Published : 2023.11.01

Abstract

The Asiatic black bear, Ursus thibetanus, is among the most threatened or endangered species in Asia. For its conservation and management, sex identification of U. thibetanus using non-invasive samples (e.g., hair and/or feces) is potentially valuable. In this study, a non-invasive molecular method for sex identification of U. thibetanus samples collected from various countries was first utilized, and it was based on polymerase chain reaction (PCR) amplification of the amelogenin gene via PCRs. Thirty-three bear DNA samples, extracted not only from blood (n=9) but also from hair (n=18) and feces (n=6), were used. We performed sex-specific PCR amplifications of the amelogenin gene using a primer set, SE47 and SE48. The primer set could successfully amplify a single X-specific band for females and both X- and Y-specific bands for males from all blood (100%) and hair (100%) samples. In addition, the primer set could distinguish the sex of bears in four out of a total of six fecal samples (approximately 67%). This study's findings suggest that this molecular method can be applied to sex identification of Asiatic black bears from various Asian regions using non-invasive samples, such as hair and feces.

Keywords

Acknowledgement

This work was partially supported by the National Institute of Ecology, funded by the Ministry of Environment (MOE) of the Republic of Korea (No. NIE-B-2023-18). It was also supported in part by the Research Institute for Veterinary Science and the Brain Korea 21 Program for Veterinary Science, Seoul National University. We thank Professor H. Lee for helping in conducting this experiment. We also thank the many field surveyors for collecting the blood, hair, and fecal samples of bears.

References

  1. Aasen, E., and Medrano, J.F. (1990). Amplification of the ZFY and ZFX genes for sex identification in humans, cattle, sheep and goats. Biotechnology (Nature Publishing Company), 8, 1279-1281. https://doi.org/10.1038/nbt1290-1279
  2. Bellemain, E., and Taberlet, P. (2004). Improved noninvasive genotyping method: application to brown bear (Ursus arctos) faeces. Molecular Ecology Notes, 4, 519-522. https://doi.org/10.1111/j.1471-8286.2004.00711.x
  3. Chapman, V.M., Keitz, B.T., Disteche, C.M., Lau, E.C., and Snead, M.L. (1991). Linkage of amelogenin (Amel) to the distal portion of the mouse X chromosome. Genomics, 10, 23-28. https://doi.org/10.1016/0888-7543(91)90479-x
  4. Ennis, S., Vaughan, L., and Gallagher, T.F. (1999). The diagnosis of freemartinism in cattle using sex-specific DNA sequences. Research in Veterinary Science, 67, 111-112. https://doi.org/10.1053/rvsc.1998.0286
  5. Fukushima, Y., Mukoyama, H., Sato, F., Hasegawa, T., Ishida, N., and Muramatsu, S. (1999). [Sex determination of equine somatic and germ cells by PCR amplification based on the sequence polymorphism of X- and Y-chromosomal amelogenin genes]. Animal Science Journal, 70, J6-J10. Japanese. https://doi.org/10.2508/chikusan.70.7_6
  6. Gerloff, U., Schlotterer, C., Rassmann, K., Rambold, I., Hohmann, G., Fruth, B., et al. (1995), Amplification of hypervariable simple sequence repeats (microsatellites) from excremental DNA of wild living bonobos (Pan paniscus). Molecular Ecology, 4, 515-518. https://doi.org/10.1111/j.1365-294X.1995.tb00247.x
  7. Gibson, C.W., Golub, E.E., Abrams, W.R., Shen, G., Ding, W., and Rosenbloom, J. (1992). Bovine amelogenin message heterogeneity: alternative splicing and Y-chromosomal gene transcription. Biochemistry, 31, 8384-8388. https://doi.org/10.1021/bi00150a036
  8. Han, S.H., Cho, I.C., Lee, S.S., Tandang, L., Lee, H., Oh, H.S., et al. (2007). Identification of species and sex of Korean Roe Deer (Capreolus pygargus tianschanicus) using SRY and CYTB genes. Integrative Biosciences, 11, 165-168. https://doi.org/10.1080/17386357.2007.9647331
  9. Hattori, K., Burdin, A.M., Onuma, M., Suzuki, M., and Ohtaishi, N. (2003). Sex determination in the sea otter (Enhydra lutris) from tissue and dental pulp using PCR amplification. Canadian Journal of Zoology, 81, 52-56. https://doi.org/10.1139/z02-219
  10. Hutton, J., and Dickson, B. (2000). Endangered Species: Threatened Convention: The Past, Present and Future of Cites: The Convention on International Trade in Endangered Species of Wild Fauna and Flora. Earthscan Publications.
  11. IUCN. (1996). IUCN Red List of Threatened Animals. Gland: IUCN.
  12. Kim, B.J., Lee, H., and Lee, S.D. (2009). Species- and sex-specific multiple PCR amplifications of partial cytochrome b gene and Zfx/Zfy introns from invasive and non-invasive samples of Korean ungulates. Genes and Genomics, 31, 369-375. https://doi.org/10.1007/BF03191255
  13. Kim, B.J., Lee, Y.S., An, J.H., Park, H.C., Okumura, H., Lee, H., et al. (2008). Species and sex identification of the Korean goral (Nemorhaedus caudatus) by molecular analysis of non-invasive samples. Molecules and Cells, 26, 314-318. https://doi.org/10.1016/S1016-8478(23)14001-5
  14. Lagerstrom, M., Dahl, N., Iselius, L., Backman, B., and Pettersson, U. (1990). Mapping of the gene for X-linked amelogenesis imperfecta by linkage analysis. American Journal of Human Genetics, 46, 120-125.
  15. Lyngstadaas, S.P., Risnes, S., Nordbo, H., and Flones, A.G. (1990). Amelogenin gene similarity in vertebrates: DNA sequences encoding amelogenin seem to be conserved during evolution. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 160, 469-472. https://doi.org/10.1007/bf00258973
  16. Murata, K., and Masuda, R. (1996). Gender determination of the Linne's two-toed sloth (Choloepus didactylus) using SRY amplified from hair. The Journal of Veterinary Medical Science, 58, 1157-1159. https://doi.org/10.1292/jvms.58.12_1157
  17. Palsboll, P.J., Vader, A., Bakke, I., and El-Gewely, M.R. (1992). Determination of gender in cetaceans by the polymerase chain reaction. Canadian Journal of Zoology, 70, 2166-2170. https://doi.org/10.1139/z92-292
  18. Salido, E.C., Yen, P.H., Koprivnikar, K., Yu, L.C., and Shapiro, L.J. (1992). The human enamel protein gene amelogenin is expressed from both the X and the Y chromosomes. American Journal of Human Genetics, 50, 303-316.
  19. Sullivan, K.M., Mannucci, A., Kimpton, C.P., and Gill, P. (1993). A rapid and quantitative DNA sex test: fluorescence-based PCR analysis of X-Y homologous gene amelogenin. BioTechniques, 15, 636-641.
  20. Termine, J.D., Belcourt, A.B., Christner, P.J., Conn, K.M., and Nylen, M.U. (1980). Properties of dissociatively extracted fetal tooth matrix proteins. I. Principal molecular species in developing bovine enamel. The Journal of Biological Chemistry, 255, 9760-9768. https://doi.org/10.1016/S0021-9258(18)43458-8
  21. Walsh, P.S., Metzger, D.A., and Higuchi, R. (1991). Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. BioTechniques, 10, 506-513.
  22. Watson, J.M., Spencer, J.A., Graves, J.A., Snead, M.L., and Lau, E.C. (1992). Autosomal localization of the amelogenin gene in monotremes and marsupials: implications for mammalian sex chromosome evolution. Genomics, 14, 785-789. https://doi.org/10.1016/s0888-7543(05)80187-9
  23. Yamamoto, K., Tsubota, T., Komatsu, T., Katayama, A., Murase, T., Kita, I., et al. (2002). Sex identification of Japanese black bear, Ursus thibetanus japonicus, by PCR based on amelogenin gene. The Journal of Veterinary Medical Science, 64, 505-508. https://doi.org/10.1292/jvms.64.505