DOI QR코드

DOI QR Code

Advantages and disadvantages of renewable energy-oil-environmental pollution-from the point of view of nanoscience

  • Shunzheng Jia (School of Engineering University of Aberdeen) ;
  • Xiuhong Niu (School of Management, Shandong Technology and Business University) ;
  • Fangting Jia (Shandong Shuifa Water Co., LTD) ;
  • Tayebeh Mahmoudi (Hoonam Sanat Farnak, Engineering and Technology knowledge-based enterprise Company)
  • Received : 2022.12.24
  • Accepted : 2023.09.21
  • Published : 2023.07.25

Abstract

This investigation delves into the adverse repercussions stemming from the impact of arsenic on steel pipes concealed within soil designated for rice cultivation. Simultaneously, the study aims to ascertain effective techniques for detecting arsenic in the soil and to provide strategies for mitigating the corrosion of steel pipes. The realm of nanotechnology presents promising avenues for addressing the intricate intersection of renewable energy, oil, and environmental pollution from a novel perspective. Nanostructured materials, characterized by distinct chemical and physical attributes, unveil novel pathways for pioneering materials that exert a substantial impact across diverse realms of food production, storage, packaging, and quality control. Within the scope of the food industry, the scope of nanotechnology encompasses processes, storage methodologies, packaging paradigms, and safeguards to ensure the safety of consumables. Of particular note, silver nanoparticles, in addition to their commendable antibacterial efficacy, boast anti-fungal and anti-inflammatory prowess, environmental compatibility, minimal irritability and allergenicity, resilience to microbial antagonism, thermal stability, and robustness. Confronting the pressing issue of arsenic contamination within both environmental settings and the food supply is of paramount importance to preserve public health and ecological equilibrium. In response, this study introduces detection kits predicated upon silver nanoparticles, providing an expeditious and economically feasible avenue for identifying arsenic concentrations ranging from 0.5 to 3 ppm within rice. Subsequent quantification employs Hydride Atomic Absorption Spectroscopy (HG-AAS), which features a detection threshold of 0.05 ㎍/l. A salient advantage inherent in the HG-AAS methodology lies in its capacity to segregate analytes from the sample matrix, thereby significantly reducing instances of spectral interference. Importantly, the presence of arsenic in the soil beneath rice cultivation establishes a causative link to steel pipe corrosion, with potential consequences extending to food contamination-an intricate facet embedded within the broader tapestry of renewable energy, oil, and environmental pollution.

Keywords

Acknowledgement

This work was supported by Shandong Social Science Planning and Research Project: Research on the comprehensive allocation level measurement and optimization strategy of urban innovation factors in Shandong Province under the digital economy (22DGLJ23) (Xiuhong Niu).

References

  1. Arole, V. and Munde, S. (2014), "Fabrication of nanomaterials by top-down and bottom-up approaches-an overview", J. Mater. Sci., 1, 89-93. http://www.milliyaresearchportal.org/sites/default/files/25.Abst_29.pdf 
  2. Baalousha, M. (2009), "Aggregation and disaggregation of iron oxide nanoparticles: Influence of particle concentration, pH and natural organic matter", Sci. Total Environ., 407(6), 2093-2101. https://doi.org/10.1016/j.scitotenv.2008.11.022 
  3. Baecklund, M., Pedersen, N.L., Bjorkman, L. and Vahter, M. (1999), "Variation in blood concentrations of cadmium and lead in the elderly", Environ. Res., 80(3), 222-230. https://doi.org/10.1006/enrs.1998.3895 
  4. Bapat, M.S., Singh, H., Shukla, S.K., Singh, P.P., Vo, D.-V.N., Yadav, A., Goyal, A., Sharma, A. and Kumar, D. (2022), "Evaluating green silver nanoparticles as prospective biopesticides: An environmental standpoint", Chemosphere, 286, 131761. https://doi.org/10.1016/j.chemosphere.2021.131761 
  5. Biswas, A., Bayer, I.S., Biris, A.S., Wang, T., Dervishi, E. and Faupel, F. (2012), "Advances in top-down and bottom-up surface nanofabrication: Techniques, applications & future prospects", Adv. Colloid Interf. Sci., 170(1), 2-27. https://doi.org/10.1016/j.cis.2011.11.001 
  6. Boulmedais, F., Frisch, B., Etienne, O., Lavalle, P., Picart, C., Ogier, J., Voegel, J.C., Schaaf, P. and Egles, C. (2004), "Polyelectrolyte multilayer films with pegylated polypeptides as a new type of anti-microbial protection for biomaterials", Biomaterials, 25(11), 2003-2011. https://doi.org/10.1016/j.biomaterials.2003.08.039 
  7. Cao, F., Gui, S.-Y., Gao, X., Zhang, W., Fu, Z.-Y., Tao, L.-M., Jiang, Z.-X., Chen, X., Qian, H. and Wang, X. (2022), "Research progress of natural product-based nanomaterials for the treatment of inflammation-related diseases", Mater. Des., 218, 110686. https://doi.org/10.1016/j.matdes.2022.110686 
  8. Celik, A., Kartal, A.A., Akdogan, A. and Kaska, Y. (2005), "Determining the heavy metal pollution in Denizli (Turkey) by using Robinio pseudo-acacia L", Environ. Int., 31(1), 105-112. https://doi.org/10.1016/j.envint.2004.07.004 
  9. Cerveira, C., Pozebon, D., de Moraes, D.P. and de Fraga, J.C.S. (2015), "Speciation of inorganic arsenic in rice using hydride generation atomic absorption spectrometry (HG-AAS)", Anal. Methods, 7(11), 4528-4534. https://doi.org/10.1039/C5AY00563A 
  10. Chausali, N., Saxena, J. and Prasad, R. (2022), "Recent trends in nanotechnology applications of bio-based packaging", J. Agricul. Food Res., 7, 100257. https://doi.org/10.1016/j.jafr.2021.100257 
  11. Cheng, F., Niu, B., Xu, N., Zhao, X. and Ahmad, A.M. (2023), "Fault detection and performance recovery design with deferred actuator replacement via a low-computation method", IEEE Transact. Automat. Sci. Eng., 1-11. https://doi.org/10.1109/TASE.2023.3300723 
  12. Cox, J.A., Rutkowska, I.A. and Kulesza, P.J. (2020), "Critical review-electrocatalytic sensors for arsenic oxo species", J. Electrochem. Soc., 167(3), 037565. https://doi.org/10.1149/1945-7111/ab697d 
  13. Cuong Bui, H. (2022), "Buckling analysis of thin-walled circular hollow section members with and without longitudinal stiffeners", Struct. Eng. Mech., Int. J., 81(2), 231-242. https://doi.org/10.12989/sem.2022.81.2.231 
  14. Dai, Z., Ma, Z., Zhang, X., Chen, J., Ershadnia, R., Luan, X. and Soltanian, M.R. (2022), "An integrated experimental design framework for optimizing solute transport monitoring locations in heterogeneous sedimentary media", J. Hydrol., 614, 128541. https://doi.org/10.1016/j.jhydrol.2022.128541 
  15. Dalzell, H.W., Dalzell, H.E., Biddlestone, A.J., Gray, K.R. and Thurairajan, K. (1987), Soil Management: Compost Production and Use in Tropical and Subtropical Environments, Food & Agriculture Org. 
  16. de Lima, R., Seabra, A.B. and Duran, N. (2012), "Silver nanoparticles: a brief review of cytotoxicity and genotoxicity of chemically and biogenically synthesized nanoparticles", J. Appl. Toxicol., 32(11), 867-879. https://doi.org/10.1002/jat.2780 
  17. Dingreville, R., Qu, J. and Mohammed, C. (2005), "Surface free energy and its effect on the elastic behavior of nano-sized particles, wires and films", J. Mech. Phys. Solids, 53(8), 1827-1854. https://doi.org/10.1016/j.jmps.2005.02.012 
  18. Dudka, S. and Adriano, D.C. (1997), "Environmental impacts of metal ore mining and processing: a review", J. Environ. Quality, 26(3), 590-602. https://doi.org/10.2134/jeq1997.00472425002600030003x 
  19. Duruibe, J.O., Ogwuegbu, M.O.C. and Egwurugwu, J.N. (2007), "Heavy metal pollution and human biotoxic effects", Int. J. Phys. Sci., 2(5), 112-118. 
  20. Farnsworth, N.R. and Soejarto, D.D. (1991), "Global importance of medicinal plants", The conservation of medicinal plants, 26, 25-51.  https://doi.org/10.1017/CBO9780511753312.005
  21. Fu, J., Zhou, Q., Liu, J., Liu, W., Wang, T., Zhang, Q. and Jiang, G. (2008), "High levels of heavy metals in rice (Oryzasativa L.) from a typical E-waste recycling area in southeast China and its potential risk to human health", Chemosphere, 71(7), 1269-1275. https://doi.org/10.1016/j.chemosphere.2007.11.065 
  22. Guo, S., Zhao, X., Wang, H. and Xu, N. (2023), "Distributed consensus of heterogeneous switched nonlinear multiagent systems with input quantization and DoS attacks", Appl. Mathe. Computat., 456, 128127. https://doi.org/10.1016/j.amc.2023.128127 
  23. Hadrup, N., Sharma, A.K. and Loeschner, K. (2018), "Toxicity of silver ions, metallic silver, and silver nanoparticle materials after in vivo dermal and mucosal surface exposure: A review", Regulat. Toxicol. Pharmacol., 98, 257-267. https://doi.org/10.1016/j.yrtph.2018.08.007 
  24. Hamad, A.F., Han, J.-H., Kim, B.-C. and Rather, I.A. (2018), "The intertwine of nanotechnology with the food industry", Saudi J. Biol. Sci., 25(1), 27-30. https://doi.org/10.1016/j.sjbs.2017.09.004 
  25. Huang, P.M. and Iskandar, I.K. (1999), Soils and groundwater pollution and remediation: Asia, Africa, and Oceania, CRC Press. 
  26. Huang, S., Zong, G., Wang, H., Zhao, X. and Alharbi, K.H. (2023), "Command filter-based adaptive fuzzy self-triggered control for MIMO nonlinear systems with time-varying fullstate constraints", Int. J. Fuzzy Syst. https://doi.org/10.1007/s40815-023-01560-8 
  27. Iqbal, P., Preece, J.A. and Mendes, P.M. (2012), "Nanotechnology: the "top-down" and "bottom-up" approaches", Supramol. Chem.: from molecules to nanomaterials, https://doi.org/10.1002/9780470661345.smc195 
  28. Iverson, W.P. (1987), Microbial Corrosion of Metals, Academic Press. 
  29. Kalajahi, S.T., Mofradnia, S.R., Yazdian, F., Rasekh, B., Neshati, J., Taghavi, L., Pourmadadi, M. and Haghirosadat, B.F. (2022), "Inhibition performances of graphene oxide/silver nanostructure for the microbial corrosion: molecular dynamic simulation study", Environ. Sci. Pollut. Res., 29(33), 49884-49897. https://doi.org/10.1007/s11356-022-19247-2 
  30. Kohane, D.S. (2007), "Microparticles and nanoparticles for drug delivery", Biotechnol. Bioeng., 96(2), 203-209. https://doi.org/10.1002/bit.21301 
  31. Kuang, F., Wang, J., Yan, L. and Zhang, D. (2007), "Effects of sulfate-reducing bacteria on the corrosion behavior of carbon steel", Electrochimica Acta, 52(20), 6084-6088. https://doi.org/10.1016/j.electacta.2007.03.041 
  32. Lin, X., Lu, K., Hardison, A.K., Liu, Z., Xu, X., Gao, D., Gong, J. and Gardner, W.S. (2021), "Membrane inlet mass spectrometry method (REOX/MIMS) to measure 15N-nitrate in isotopeenrichment experiments", Ecolog. Indicat., 126, 107639. https://doi.org/10.1016/j.ecolind.2021.107639 
  33. Liu, L., Tang, Y. and Liu, D. (2022), "Investigation of future lowcarbon and zero-carbon fuels for marine engines from the view of thermal efficiency", Energy Reports, 8, 6150-6160. https://doi.org/10.1016/j.egyr.2022.04.058 
  34. Liu, Z., Li, H., Hou, K., Xu, X., Jia, H., Zhu, L. and Mu, Y. (2023a), "Risk assessment and alleviation of regional integrated energy system considering cross-system failures", Appl. Energy, 350, 121714. https://doi.org/10.1016/j.apenergy.2023.121714 
  35. Liu, Z., Tang, P., Hou, K., Zhu, L., Zhao, J., Jia, H. and Pei, W. (2023b), "A Lagrange-multiplier-based Reliability Assessment for Power Systems Considering Topology and Injection Uncertainties", IEEE Transact. Power Syst., 1-11. https://doi.org/10.1109/TPWRS.2023.3258319 
  36. Meads, C.A., Cnossen, J.S., Meher, S., Juarez-Garcia, A., Ter Riet, G., Duley, L., Roberts, T.E., Mol, B.W., Van der Post, J.A. and Leeflang, M.M. (2008), "Methods of prediction and prevention of pre-eclampsia: systematic reviews of accuracy and effectiveness literature with economic modelling". http://hdl.handle.net/10871/11535 
  37. Mohammed, A.S., Kapri, A. and Goel, R. (2011), Heavy Metal Pollution: Source, Impact, and Remedies, Springer. 
  38. Moradi, M., Ghiara, G., Spotorno, R., Xu, D. and Cristiani, P. (2022), "Understanding biofilm impact on electrochemical impedance spectroscopy analyses in microbial corrosion and microbial corrosion inhibition phenomena", Electroch. Acta, 426, 140803. https://doi.org/10.1016/j.electacta.2022.140803 
  39. Myers, A. (2013), "The archaeology of reform at a German prisoner of war camp in a Canadian national park during the Second World War (1943-1945)", Stanford University. 
  40. Nalwa, H.S. (1999), Handbook of nanostructured materials and nanotechnology, 5-volume set, Academic Press. 
  41. Nriagu, J.O., Pacyna, J.M., Milford, J.B. and Davidson, C.I. (1988), "Distribution and characteristic features of chromium in the atmosphere", Adv. Environ. Sci. Technol., 20, 125-172. 
  42. Pandey, B., Singh, P. and Kumar, V. (2021), "Photocatalyticsorption processes for the removal of pollutants from wastewater using polymer metal oxide nanocomposites and associated environmental risks", Environ. Nanotech., Monitor. Manage., 16, 100596. https://doi.org/10.1016/j.enmm.2021.100596 
  43. Phillips, D.J.H. (1990), "Arsenic in aquatic organisms: a review, emphasizing chemical speciation", Aquatic Toxicol., 16(3), 151-186. https://doi.org/10.1016/0166-445X(90)90036-O 
  44. Prabhu, S. and Poulose, E.K. (2012), "Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects", Int. Nano Lett., 2(1), 32. https://doi.org/10.1186/2228-5326-2-32nano- 
  45. Rai, M.K., Deshmukh, S.D., Ingle, A.P. and Gade, A.K. (2012), "Silver nanoparticles: the powerful nanoweapon against multidrug-resistant bacteria", J. Appl. Microbiol., 112(5), 841-852. https://doi.org/10.1111/j.1365-2672.2012.05253.x 
  46. Shang, M. and Luo, J. (2021), "The tapio decoupling principle and key strategies for changing factors of chinese urban carbon footprint based on cloud computing", Int. J. Environ. Res. Public Health, 18(4), p. 2101. https://doi.org/10.3390/ijerph18042101 
  47. Shariq, M., Pal, S., Chaubey, R. and Masood, A. (2022), "An experimental and analytical study into the strength of hookedend steel fiber reinforced HVFA concrete", Adv. Concrete Constr., Int. J., 13(1), 35-43. https://doi.org/10.12989/acc.2022.13.1.035 
  48. Shokry, H. and Hamad, H. (2016), "Effect of superparamagnetic nanoparticles on the physicochemical properties of nano hydroxyapatite for groundwater treatment: adsorption mechanism of Fe (II) and Mn (II)", RSC Adv., 6(85), 82244-82259. https://doi.org/10.1039/C6RA14497G 
  49. Shokri, A. and Sanavi Fard, M. (2022), "Corrosion in seawater desalination industry: A critical analysis of impacts and mitigation strategies", Chemosphere, 307, 135640. https://doi.org/10.1016/j.chemosphere.2022.135640 
  50. Sohrabi, N., Kalantari, N., Amiri, V., Saha, N., Berndtsson, R., Bhattacharya, P. and Ahmad, A. (2021), "A probabilistic-deterministic analysis of human health risk related to the exposure to potentially toxic elements in groundwater of Urmia coastal aquifer (NW of Iran) with a special focus on arsenic speciation and temporal variation", Stochastic Environ. Res. Risk Assess., 35(7), 1509-1528. https://doi.org/10.1007/s00477-020-01934-6 
  51. Soltani, M., Moradi Kashkooli, F., Alian Fini, M., Gharapetian, D., Nathwani, J. and Dusseault, M.B. (2022), "A review of nanotechnology fluid applications in geothermal energy systems", Renew. Sustain. Energy Rev., 167, 112729. https://doi.org/10.1016/j.rser.2022.112729 
  52. Soltanieh, G., Yam Michael, C.H., Zhang, J.-Z. and Ke, K. (2022), "Closed-form solution for the buckling behavior of the delaminated FRP plates with a rectangular hole using superelastic SMA stitches", Struct. Eng. Mech., Int. J., 81(1), 39-50. https://doi.org/10.12989/sem.2022.81.1.039 
  53. Subhan, M.A. and Subhan, T. (2022), Chapter 5 - Safety and global regulations for application of nanomaterials, Elsevier. 
  54. Tang, S.L.Y., Smith, R.L. and Poliakoff, M. (2005), "Principles of green chemistry: PRODUCTIVELY", Green Chem., 7(11), 761-762. https://doi.org/10.1039/B513020B 
  55. Tang, F., Wang, H., Zhang, L., Xu, N. and Ahmad, A.M. (2023), "Adaptive optimized consensus control for a class of nonlinear multi-agent systems with asymmetric input saturation constraints and hybrid faults", Commun. Nonlinear Sci. Numer. Simul., 126, 107446. https://doi.org/10.1016/j.cnsns.2023.107446 
  56. Tian, H., Cui, Z., Ma, H., Zhao, P., Yan, M., Wang, X. and Cui, H. (2022), "Corrosion evolution and stress corrosion cracking behavior of a low carbon bainite steel in the marine environments: Effect of the marine zones", Corros. Sci., 206, 110490. https://doi.org/10.1016/j.corsci.2022.110490 
  57. Tiller, K.G., McLaughlin, M.J. and Roberts, A.H.C. (2020), Environmental Impacts of Heavy Metals in Agroecosystems and Amelioration Strategies in Oceania, CRC Press. 
  58. Uhlig, H.H. and Revie, R.W. (1985), "Corrosion and corrosion control". https://www.osti.gov/biblio/7195167 
  59. Vijayakumar, M., Priya, K., Nancy, F.T., Noorlidah, A. and Ahmed, A.B.A. (2013), "Biosynthesis, characterisation and antibacterial effect of plant-mediated silver nanoparticles using Artemisia nilagirica", Indust. Crops Prod., 41, 235-240. https://doi.org/10.1016/j.indcrop.2012.04.017 
  60. Wang, J., Du, M., Li, G. and Shi, P. (2022a), "Research progress on microbiological inhibition of corrosion: A review", J. Cleaner Product., 373, 133658. https://doi.org/10.1016/j.jclepro.2022.133658 
  61. Wang, J., Wang, Y., Ren, W., Zhang, D., Ju, P. and Dou, K. (2022b), ""Nano Killers" Activation by permonosulfate enables efficient anaerobic microorganisms disinfection", J. Hazard. Mater., 440, 129742. https://doi.org/10.1016/j.jhazmat.2022.129742 
  62. Wu, G.-y., Yu, L., Wang, Y.-r., Yuan, X., Tang, Y.-f., Chen, W. and Zeng, L.-z. (2022a), "Quaternary ammonium salt-based crosslinked micelle with copper nanoparticles for treatment of sulfate reducing bacteria biofilm", React. Funct. Polym., 180, 105405. https://doi.org/10.1016/j.reactfunctpolym.2022.105405 
  63. Wu, J., Zheng, J., Sun, G. and Chang, X. (2022b), "Experimental and numerical analyses on axial cyclic behavior of H-section aluminium alloy members", Struct. Eng. Mech., Int. J., 81(1), 11-28. https://doi.org/10.12989/sem.2022.81.1.011 
  64. Wu, W., Xu, N., Niu, B., Zhao, X. and Ahmad, A.M. (2023), Low-Computation Adaptive Saturated Self-Triggered Tracking Control of Uncertain Networked Systems. 
  65. Yang, J., Wang, Z.B., Qiao, Y.X. and Zheng, Y.G. (2022), "Synergistic effects of deposits and sulfate reducing bacteria on the corrosion of carbon steel", Corros. Sci., 199, 110210. https://doi.org/10.1016/j.corsci.2022.110210 
  66. Yang, L., Wang, H., Xu, H., Guo, D. and Li, M. (2023), "Experimental study on characteristics of water imbibition and ion diffusion in shale reservoirs", Geoenergy Sci. Eng.. 229, 212167. https://doi.org/10.1016/j.geoen.2023.212167 
  67. Zehra, S., Mobin, M. and Aslam, J. (2022), 1 - An overview of the corrosion chemistry, Elsevier. 
  68. Zhao, Y., Niu, B., Zong, G., Zhao, X. and Alharbi, K.H. (2023), "Neural network-based adaptive optimal containment control for non-affine nonlinear multi-agent systems within an identifier-actor-critic framework", J. Franklin Inst., 360(12), 8118-8143. https://doi.org/10.1016/j.jfranklin.2023.06.014 
  69. Zhong, Y. and Liang, X. (2022), "Using CNN-VGG 16 to detect the tennis motion tracking by information entropy and unascertained measurement theory", Adv. Nano Res., Int. J., 12(2), 223-229. https://doi.org/10.12989/anr.2022.12.2.223 
  70. Zhu, Y. and Wu, X. (2023), "Heterostructured materials", Progress Mater. Sci., 131, 101019. https://doi.org/10.1016/j.pmatsci.2022.101019 
  71. Zito, P. and Shipley, H.J. (2015), "Inorganic nano-adsorbents for the removal of heavy metals and arsenic: a review", RSC Adv., 5(38), 29885-29907. https://doi.org/10.1039/C5RA02714D