DOI QR코드

DOI QR Code

Experimental study on variation in rheological properties of concrete subjected to pressure and shearing by pumping

  • Jung Soo Lee (Department of Civil and Environmental Engineering, Myongji University) ;
  • Kyong Pil Jang (Department of Building Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Chan Kyu Park (Institute of Construction Technology, Samsung C & T Corporation) ;
  • Seung Hee Kwon (Department of Civil and Environmental Engineering, Myongji University)
  • 투고 : 2023.02.21
  • 심사 : 2023.09.18
  • 발행 : 2023.07.25

초록

In the pumping process, concrete moves along the pipe and experiences both pressure and shear. This changes the workability and flow characteristics of the concrete. However, the effect of pressure and shear on the change in properties of concrete during the pumping process has not yet been accurately identified. This study analyzed the effects of pressure and shear on the properties of concrete during pumping. For quantitative tests, lab-scale test equipment capable of simulating the pressure and shear applied to concrete during pumping was used. For one coarse aggregate type, two paste types, three mortar types, and five concrete types, the effects of pressure, shear, and shear under pressure conditions were examined by varying the maximum pressure (0 to 200 bar) and the rotational speed of the vane for shear (0 to 180 rpm). Under the maximum pressure condition of 200 bar, the water absorption of coarse aggregate increased by 0.62% and that of fine aggregate also increased. When the concrete was under pressure, significant changes (a reduction in a slump and an increase in viscosity and yield stress) compared with the effect of the elapsed time occurred owing to an increase in the water absorption of the aggregates. When both pressure and shear were applied to concrete, both the slump and viscosity decreased. As the rotational speed of the vane increased, changes in properties became significant. Shearing in the absence of pressure maintained the properties of concrete. However, shearing under pressure conditions caused a reduction in slump and viscosity.

키워드

과제정보

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2022R1A2C2006969).

참고문헌

  1. Alekseev, S.N. (1952), "On the calculation of resistance in pipe of concrete pumps", Mekhanizatia Storitel'stva, 9(1), 8-13.
  2. ASTM C143 (2010), Standard Test Method for Slump of Hydraulic-Cement Concrete, ASTM International.
  3. ASTM C1611 (2021), Standard Test Method for Slump Flow of Self-Consolidating Concrete, ASTM International.
  4. Beitzel, H. and Beitzel, M. (2008), "Pump Application for Self-Compacting Concrete under Extreme Conditions", SCC2008, Chicago, IL, USA.
  5. Bingham, E.C. (1922), Fluidity and Plasticity, McGraw-Hill, New York, USA.
  6. Bauchkar, S.D. and Chore, H.S. (2014), "Rheological properties of self consolidating concrete with various mineral admixtures", Structural Engineering and Mechanics, 51(1), 1-13. https://doi.org/10.12989/SEM.2014.51.1.001
  7. Choi, M.S., Kim, Y.J. and Kwon, S.H. (2013), "Prediction on pipe flow of pumped concrete based on shear-induced particle migration", Cement Concrete Res., 52, 216-224. https://doi.org/10.1016/j.cemconres.2013.07.004
  8. Choi, Y.W., Choi, B.K. and Oh, S.R. (2016), "Absorption Properties of Coarse Aggregate according to Pressurization for Development of High Fluidity Concrete under High Pressure Pumping", J. Korea Inst. Struct. Maint. Inspect., 20(3), 122-129. [in Korean] https://doi.org/10.11112/jksmi.2016.20.3.122
  9. Du, L. and Folliard, K.J. (2005), "Mechanisms of air entrainment in concrete", Cement Concrete Res., 35(8), 1463-1471. https://doi.org/10.1016/j.cemconres.2004.07.026
  10. Dyer, R.M. (1991), "An investigation of concrete pumping pressure and the effects of pressure on the air void system of concrete", Master Thesis; University of Washington, 223 p.
  11. Feys, D., Khayat, K.H., Schell, A.P. and Khatib, R. (2015), "Prediction of pumping pressure by means of new tribometer for highly-workable concrete", Cement Concrete Compos., 57, 102-115. https://doi.org/10.1016/j.cemconcomp.2014.12.007
  12. Feys, D., Schutter, G.D., Khayat, K.H. and Verhoeven, R. (2016), "Changes in rheology of self-consolidating concrete induced by pumping", Mater. Struct., 49, 4657-4677. https://doi.org/10.1617/s11527-016-0815-7
  13. Hover, K.C. (1989), "Some recent problems with air-entrained concrete", Cement Concrete Aggreg., 11(1), 67-72. https://doi.org/10.1520/CCA10104J
  14. Jang, K.P. (2018), "Design of concrete pumpability based on quantitative predictions", Ph.D. Dissertation of Philosophy; Myong-ji University, Republic of Korea. [in Korean]
  15. Jang, K.P., Kwon, S.H., Choi, M.S., Kim, Y.J., Park, C.K. and Shah, S.P. (2018), "Experimental observation on variation of rheological properties during concrete pumping", Int. J. Concrete Struct. Mater., 12(1), 1-15. https://doi.org/10.1186/s40069-018-0310-3
  16. Jean, S.S., Kim, S.H., Ji, S.W., Seo, C.H., Kim, O.J. and Lee, D.B. (2006), "An experimental study on the quality variation of concrete caused by high pressure in pumping", Proceedings of the Korea Concrete Institute, Korea Concrete Institute, 18(1-2), 613-616. [in Korean]
  17. Jeong, J.H., Jang, K.P., Park, C.K., Lee, S.H. and Kwon, S.H. (2016), "Effect of admixtures on pumpability for high-strength concrete", ACI Mater. J., 113(3), 323-333. https://doi.org/10.14359/5168864
  18. Ji, S.W. and Seo, C.H. (2006), "Development of concrete pumping technology in high-rise buildings", Architect. Inst. Korea, 50(4), 66-71.
  19. Kaplan, D., de Larrard, F. and Sedran, T. (2005a), "Design of concrete pumping circuit", ACI Mater. J., 102(2), 110-117. https://doi.org/10.14359/14304
  20. Kaplan, D., de Larrard, F. and Sedran, T. (2005b), "Avoidance of blockages in concrete pumping process", ACI Mater. J., 102(3), 193-191.
  21. KCI-UC10. (2019), Standard Test Method for Rheology of Concrete : Vane Rotation Method, Korea Concrete Institute.
  22. Kim, J.H., Kwon, S.H., Kawashima, S. and Yim, H.J. (2017), "Rheology of cement paste under high pressure", Cement Concrete Compos., 77, 60-67. https://doi.org/10.1016/j.cemconcomp.2016.11.007
  23. Kim, J.S., Kwon, S.H., Jang, K.P. and Choi, M.S. (2018), "Concrete pumping prediction considering different measurement of the rheological properties", Constr. Build. Mater., 171, 493-503. https://doi.org/10.1016/j.conbuildmat.2018.03.194
  24. Ko, J.H., Moon, H.J., Seok, W.K., Park, S.J. and Kim, H.J. (2008), "A study on the 1: 1 full scale core wall mock-up test of high strength concrete performed by testing pumpability", J. Architect. Inst. Korea Struct. Constr., 24(8), 203-210.
  25. Ko, J.W., Kim, J.J., Lee, S.H., Moon, H.J. and Park, S.J. (2010), "An experimental study on the physical property change of high strength concrete for high-rise building before and after concrete pumping transfer", J. Architect. Inst. Korea Struct. Constr., 26(9), 71-78.
  26. KS F 2503 (2019), Standard test method for density and water absorption of coarse aggregate, Korea Standard Committee; Seoul, Republic of Korea.
  27. Kwon, S.H., Jo, S.D., Par, C.K., Jeong, J.H. and Lee, S.H. (2013a), "Prediction of concrete pumping: Part I. Development of a new tribometer to measure rheological properties of lubricating layer", ACI Mater. J., 110(6), 647-655. https://doi.org/10.14359/51686332
  28. Kwon, S.H., Jo, S.D., Park, C.K., Jeong, J.H. and Lee, S.H. (2013b), "Prediction of concrete pumping: Part II - Analytical Prediction and Experimental Verification", ACI Mater. J., 110(6), 657-668. https://doi.org/10.14359/51686333
  29. Kwon, S.H., Jang, K.P., Kim, J.H. and Shah, S.P. (2016), "State of the art on prediction of concrete pumping", Int. J. Concrete Struct. Mater., 10(3), 75-85. https://doi.org/10.1007/s40069-016-0150-y
  30. Kwon, S.H., Jang, K.P. and Lee, J.S. (2021), "External Injection Method for Improvement of Concrete Pumpability", ACI Mater. J., 118(5), 17-28.
  31. Le, H.D., Kadri, E.H., Aggoun, S., Vierendeels, J., Troch, P. and De Schutter, G. (2015), "Effect of lubrication layer on velocity profile of concrete in a pumping pipe", Mater. Struct., 48(12), 3991-4003. https://doi.org/10.1617/s11527-014-0458-5
  32. Lee, J.S. (2020), "Research on a method to improve concrete pumpability by external injection of friction reducing agent", Ph.D. Dissertation of Philosophy; Myong-ji University, Republic of Korea.
  33. Lee, K.W. and Choi, M.S. (2021), "Evaluation of 3D printability of cementitious materials according to thixotropy behavior", Adv. Concrete Constr., Int. J., 11(2), 141-149. https://doi.org/10.12989/acc.2021.11.2.141
  34. Lee, J.H., Moon, H.J. and Kim, J.J. (2012), "An experimental study on pumpability characteristics of high strength concrete mixed polymix", J. Korea Concrete Inst., 24(5), 509-516. [in Korean] https://doi.org/10.4334/JKCI.2012.24.5.509
  35. Lee, J.S., Jang, K.P., Park, C.K. and Kwon, S.H. (2018), "Verification on effect of external injection of activation agent for lubrication layer through full-scale concrete pumping test", J. Korea Concrete Inst., 30(6), 649-655. https://doi.org/10.4334/JKCI.2018.30.6.649
  36. Lee, K.W., Lee, H.J. and Choi, M.S. (2019), "Evaluation of 3D concrete printing performance from a rheological perspective", Adv. Concrete Constr., Int. J., 8(2), 155-163. https://doi.org/10.12989/acc.2019.8.2.155
  37. Lee, H.J., Kim, J.H., Moon, J.H., Kim, W.W. and Seo, E.A. (2020a), "Experimental analysis on rheological properties for control of concrete extrudability", Adv. Concrete Constr., Int. J., 9(1), 93-102. https://doi.org/10.12989/acc.2020.9.1.093
  38. Lee, J.S., Jang, K.P. and Kwon, S.H. (2020b), "Suggetion of a Evaluation Method for Variation of Concrete Workability According to Pumping Condition through Lab-Scale Test", J. Rec. Const. Resour., 8(4), 413-420. [in Korean]
  39. Lee, J.S., Kim, E.S., Jang, K.P., Park, C.K. and Kwon, S.H. (2022), "Prediction of concrete pumping based on correlation between slump and rheological properties", Adv. Concrete Constr., Int. J., 13(5), 395-410. https://doi.org/10.12989/acc.2022.13.5.395
  40. Ouchi, M. and Sakue, J. (2008), "Self-Compactability of Fresh Concrete in terms of Dispersion and Coagulation of Particles of Cement Subject to Pumping", SCC2008, Chicago, IL, USA.
  41. Park, C.K., Jang, K.P., Jeong, J.H., Sohn, Y.S. and Kwon, S.H. (2020), "Analysis on pressure losses in pipe bends based on real-scale concrete pumping tests", ACI Mater. J., 117(3), 205-216.
  42. Park, S.W., Ju, S.H., Kim, H.K., Seo, Y.S. and Pyo, S.H. (2022), "Effect of the rheological properties of fresh binder on the compressive strength of pervious concrete", J. Mater. Res. Technol., 17, 636-648. https://doi.org/10.1016/j.jmrt.2022.01.045
  43. Petit, J.Y., Khayat, K.H. and Wirquin, E. (2008), "Methodology to couple time-temperature effects on rheology of mortar", ACI Mater. J., 105(4), 342-349.
  44. Sugamata, T., Hibino, M., Ouchi, M. and Okamura, H. (2000), "A study of particle dispersing retention effect of polycarboxylate-based superplasticizers", Transact. Japan Concrete Inst. (JCI), 21, 7-14.
  45. Tanigawa, Y., Mori, H. and Noda, Y. (1991), "Theoretical study on pumping of fresh concrete", Concrete Institute of Japan, 13.
  46. Tattersall, G.H. and Banfill, P.F. (1983), "The Rheology of Fresh Concrete", Pitman Advanced Publishing Program, London, UK, pp. 53.
  47. Watanabe, K., Ono, H., Katou, K. and Tanigawa, Y. (2007), "Analytical and Experimental Study on Flow of Fresh concrete in Conveying Pipe", Proceedings of the 5th International RILEM Symposium on Self-Compacting Concrete, Ghent, Belgium, pp. 393-398.
  48. Yim, H.J., Kim, J.H. and Kwon, S.H. (2016), "Effect of admixtures on the yield stresses of cement pastes under high hydrostatic pressures", Materials, 9(3), 147. https://doi.org/10.3390/ma9030147
  49. Zhu, L., Yang, Z., Zhao, Y., Wu, X. and Guan, X. (2022), "Printing performance of 3D printing cement-based materials containing steel slag", Adv. Concrete Constr., Int. J., 13(4), 281-289. https://doi.org/10.12989/acc.2022.13.4.281