DOI QR코드

DOI QR Code

Mechanical properties of sustainable green self-compacting concrete incorporating recycled waste PET: A state-of-the-art review

  • Shireen T. Saadullah (Civil Engineering Department, College of Engineering, University of Duhok (UoD)) ;
  • James H. Haido (Civil Engineering Department, College of Engineering, University of Duhok (UoD)) ;
  • Yaman S.S. Al-Kamaki (Civil Engineering Department, College of Engineering, University of Duhok (UoD))
  • Received : 2023.04.30
  • Accepted : 2023.09.15
  • Published : 2023.07.25

Abstract

Majority of the plastic produced each year is being disposed in land after single-use, which becomes waste and takes up a lot of storage space. Therefore, there is an urgent need to find alternative solutions instead of disposal. Recycling and reusing the PET plastic waste as aggregate replacement and fiber in concrete production can be one of the eco- friendly methods as there is a great demand for concrete around the world, especially in developing countries by raising human awareness of the environment, the economy, and Carbon dioxide (CO2) emissions. Self-compacting concrete (SCC) is a key development in concrete technology that offers a number of attractive features over traditional concrete applications. Recently, in order to improve its durability and prevent such plastics from directly contacting the environment, various kinds of plastics have been added. This review article summarizes the latest evident on the performance of SCC containing recycled PET as eco-friendly aggregates and fiber. Moreover, it highlights the influence of substitution content, shape, length, and size on the fresh and properties of SCC incorporating PET plastic. Based on the findings of the articles that were reviewed for this study, it is observed that SCC made of PET plastic (PETSCC) can be employed in construction era owing to its acceptable mechanical and fresh properties. On the other hand, it is concluded that owing to the lightweight nature of plastic aggregate, Reusing PET waste in the construction application is an effective approach to reduces the earthquake risk of a building.

Keywords

Acknowledgement

The authors did not receive any funds for the preparation of this manuscript.

References

  1. Abo Dhaheer, M.S., Al-Rubaye, M.M., Alyhya, W.S., Karihaloo, B.L. and Kulasegaram, S. (2016), "Proportioning of selfcompacting concrete mixes based on target plastic viscosity and compressive strength: Part II - experimental validation", J. Sustain. Cement-Based Mater., 5(4), 217-232. https://doi.org/10.1080/21650373.2015.1036952
  2. Aci 211.1. (1991), Standard practice for selecting proportions for normal, heavyweight, and mass concrete (ACI 211.1-91), Farmington Hills, MI, USA.
  3. Abdul Rahman, B.M. (2016), "Response of hybrid waste fiber-self compacted reinforced concrete slabs under static loading", Eng. Technol. J., 34(9), 232-245. https://doi.org/10.30684/etj.34.9A.17
  4. Ahari, R.S., Erdem, T.K. and Ramyar, K. (2015), "Permeability properties of self-consolidating concrete containing various supplementary cementitious materials", Constr. Build. Mater., 79, 326-336. https://doi.org/10.1016/j.conbuildmat.2015.01.053
  5. Akcaozoglu, S., Atis, C.D. and Akcaozoglu, K. (2010), "An investigation on the use of shredded waste PET bottles as aggregate in lightweight concrete", Waste Manage., 30(2), 285-90. https://doi.org/10.1016/j.wasman.2009.09.033
  6. Akkouri, N., Bourzik, O., Baba, K. and Tayeh, B.A. (2022), "Thermophysical characteristics of eco-friendly mortars containing recycled PET as partial sand replacement in dry and wet conditions", Innov. Infrastr. Solut., 7(4), 238. https://doi.org/10.1007/s41062-022-00838-4
  7. Al-Hadithi, A.I. and Frhaan, W. (2017), "The effects of adding waste plastic fibers (WPFs) on some properties of self compacting concrete using Iraqi local materials", Iraqi J. Civil Eng., 11(1), 1-20. https://doi.org/10.37650/ijce.2017.133748
  8. Al-Hadithi, A.I. and Hilal, N.N. (2016), "The possibility of enhancing some properties of self-compacting concrete by adding waste plastic fibers", J. Build. Eng., 8, 20-28. https://doi.org/10.1016/j.jobe.2016.06.011
  9. Al-Hadithi, A.I., Noaman, A.T. and Mosleh, W.K. (2019), "Mechanical properties and impact behavior of PET fiber reinforced self-compacting concrete (SCC)", Compos. Struct., 224, 111021. https://doi.org/10.1016/j.compstruct.2019.111021
  10. Al-Oran, A.A.A., Safiee, N.A. and Nasir, N.A.M. (2022), "Fresh and hardened properties of self-compacting concrete using metakaolin and GGBS as cement replacement", Eur. J. Environ. Civil Eng., 26(1), 379-392. https://doi.org/10.1080/19648189.2019.1663268
  11. Al-Salem, S., Lettieri, P. and Baeyens, J. (2009), "Recycling and recovery routes of plastic solid waste (PSW): A review", Waste Manage., 29(10), 2625-2643. https://doi.org/10.1016/j.wasman.2009.06.004
  12. Al-Tayeb, M.M., Hanafi, I., Mahmoud, R. and Tayeh, B.A. (2019), "Effect of partial replacement of sand by plastic waste on impact resistance of concrete: experiment and simulation", Structures, 20, 519-526. https://doi.org/10.1016/j.istruc.2019.06.008
  13. Al-Tayeb, M.M., Al Daoor, I., Wafi, S.R. and Tayeh, B. (2020), "Ultimate failure resistance of concrete with partial replacements of sand by polycarbonate plastic waste under impact load", Civil Environ. Res., 12(2). https://doi.org/10.7176/CER/12-2-06
  14. Al-Tayeb, M.M., Zeyad, A.M., Dawoud, O. and Tayeh, B.A. (2021), "Experimental and numerical investigations of the influence of partial replacement of coarse aggregates by plastic waste on the impact load", Int. J. Sustain. Eng., 14(4), 735-742. https://doi.org/10.1080/19397038.2020.1774820
  15. Al-Tayeb, M.M., Aisheh, Y.I.A., Qaidi, S.M. and Tayeh, B.A. (2022), "Experimental and simulation study on the impact resistance of concrete to replace high amounts of fine aggregate with plastic waste", Case Stud. Constr. Mater., 17, e01324. https://doi.org/10.1016/j.cscm.2022.e01324
  16. Almeshal, I. and Tayeh, B.A. (2020), "Use of recycled plastic as fine aggregate in cementitious composites: A review", Constr. Build. Mater., 253, 119146. https://doi.org/10.1016/j.conbuildmat.2020.119146
  17. Almeshal, I., Tayeh, B.A., Alyousef, R., Alabduljabbar, H. and Mohamed, A.M. (2020), "Eco-friendly concrete containing recycled plastic as partial replacement for sand", J. Mater. Res. Technol., 9(3), 4631-4643. https://doi.org/10.1016/j.jmrt.2020.02.090
  18. Alyamac, K.E., Ghafari, E. and Ince, R. (2017), "Development of eco-efficient self-compacting concrete with waste marble powder using the response surface method", J. Cleaner Prod., 144, 192-202. https://doi.org/10.1016/j.jclepro.2016.12.156
  19. As'ad, S., Gunawan, P. and Alaydrus, M.S. (2011), "Fresh state behavior of self compacting concrete containing waste material fibres", Procedia Eng., 14, 797-804. https://doi.org/10.1016/j.proeng.2011.07.101
  20. Ashok, M., Jayabalan, P., Saraswathy, V. and Muralidharan, S. (2020), "A study on mechanical properties of concrete including activated recycled plastic waste", Adv. Concrete Constr., Int. J., 9(2), 207-215. https://doi.org/10.12989/acc.2020.9.2.207
  21. Aswatama, W.K., Suyoso, H. and Tedy, P. (2018), "The effect of adding PET (Polyethylen Terephthalate) plastic waste on SCC (self-compacting concrete) to fresh concrete behavior and mechanical characteristics", In: Journal of Physics Conference Series, Vol. 953, No. 1, p. 012023.
  22. Ayub, T., Khan, S.U. and Mahmood, W. (2021), "Mechanical properties of self-compacting rubberised concrete (SCRC) containing polyethylene terephthalate (PET) fibres", Iran. J. Sci. Technol., Transact. Civil Eng., 46, 1073-1085. https://doi.org/10.1007/s40996-020-00568-6
  23. Basser, H., Shaghaghi, T.M., Afshin, H., Ahari, R.S. and Mirrezaei, S.S. (2022), "An experimental investigation and response surface methodology-based modeling for predicting and optimizing the rheological and mechanical properties of self-compacting concrete containing steel fiber and PET", Constr. Build. Mater., 315, 125370. https://doi.org/10.1016/j.conbuildmat.2021.125370
  24. Behera, M., Bhattacharyya, S., Minocha, A., Deoliya, R. and Maiti, S. (2014), "Recycled aggregate from C&D waste & its use in concrete-A breakthrough towards sustainability in construction sector: A review", Constr. Build. Mater., 68, 501-516. https://doi.org/10.1016/j.conbuildmat.2014.07.003
  25. Bouziani, T. (2013), "Assessment of fresh properties and compressive strength of self-compacting concrete made with different sand types by mixture design modelling approach", Constr. Build. Mater., 49, 308-314. https://doi.org/10.1016/j.conbuildmat.2013.08.039
  26. Bui, V.K., Akkaya, Y. and Shah, S.P. (2002), "Rheological model for self-consolidating concrete", Mater. J., 99(6), 549-559. https://doi.org/10.14359/12364
  27. Chavan, S. and Rao, P. (2016), "Utilization of waste PET bottle fibers in concrete as an innovation in building materials-[A review paper]", Int. J. Eng. Res., 5, 304-307.
  28. Chen, Y.-Y., Tuan, B.L.A. and Hw ang, C.-L. (2013), "Effect of paste amount on the properties of self-consolidating concrete containing fly ash and slag", Constr. Build. Mater., 47, 340-346. https://doi.org/10.1016/j.conbuildmat.2013.05.050
  29. Choi, Y.-W., Moon, D.-J., Chung, J.-S. and Cho, S.-K. (2005), "Effects of waste PET bottles aggregate on the properties of concrete", Cement Concrete Res., 35(4), 776-781. https://doi.org/10.1016/j.cemconres.2004.05.014
  30. Choi, Y.W., Moon, D.J., Kim, Y.J. and Lachemi, M. (2009), "Characteristics of mortar and concrete containing fine aggregate manufactured from recycled waste polyethylene terephthalate bottles", Constr. Build. Mater., 23(8), 2829-2835. https://doi.org/10.1016/j.conbuildmat.2009.02.036
  31. EFNARC (2005), "The European guidelines for self-compacting concrete", BIBM, 22, 563.
  32. Dehwah, H. (2012), "Mechanical properties of self-compacting concrete incorporating quarry dust powder, silica fume or fly ash", Constr. Build. Mater., 26(1), 547-551. https://doi.org/10.1016/j.conbuildmat.2011.06.056
  33. Dinakar, P. (2012), "Design of self-compacting concrete with fly ash", Magaz. Concrete Res., 64(5), 401-409. https://doi.org/10.1680/macr.10.00167
  34. Dinakar, P., Sethy, K.P. and Sahoo, U.C. (2013), "Design of selfcompacting concrete with ground granulated blast furnace slag", Mater. Des., 43, 161-169. https://doi.org/10.1016/j.matdes.2012.06.049
  35. Djelloul, O.K., Menadi, B., Wardeh, G. and Kenai, S. (2018), "Performance of self-compacting concrete made with coarse and fine recycled concrete aggregates and ground granulated blast-furnace slag", Adv. Concrete Constr., Int. J., 6(2), 103-121. https://doi.org/10.12989/acc.2018.6.2.103
  36. Domone, P. (2009), "Proportioning of self-compacting concrete-the UCL method".
  37. Fayed, S. and Mansour, W. (2020), "Evaluate the effect of steel, polypropylene and recycled p lastic fibers on concrete properties", Adv. Concrete Constr., Int. J., 10(4), 319-332. https://doi.org/10.12989/acc.2020.10.4.319
  38. Fediuk, R., Mosaberpanah, M.A. and Lesovik, V. (2020), "Development of fiber reinforced self-compacting concrete (FRSCC): Towards an efficient utilization of quaternary composite binders and fibers", Adv. Concrete Constr., Int. J., 9(4), 387-395. https://doi.org/10.12989/acc.2020.9.4.387
  39. Ferrara, L., Park, Y.-D. and Shah, S.P. (2007), "A method for mixdesign of fiber-reinforced self-compacting concrete", Cement Concrete Res., 37(6), 957-971. https://doi.org/10.1016/j.cemconres.2007.03.014
  40. Foti, D. (2013), "Use of recycled waste pet bottles fibers for the reinforcement of concrete", Compos. Struct., 96, 396-404. https://doi.org/10.1016/j.compstruct.2012.09.019
  41. Frigione, M. (2010), "Recycling of PET bottles as fine aggregate in concrete", Waste Manage., 30(6), 1101-1106. https://doi.org/10.1016/j.wasman.2010.01.030
  42. Ganaw, A., Meghari, B., Alkoum, A. and Alawig, M. (2018), "Influence of Plastic Bottles Fibre on Self Compacting Concrete", Proceedings of First Conference for Engineering Sciences and Technology, Vol. 2, p. 638. https://doi.org/10.21467/proceedings.4.31
  43. Gholhaki, M., Hajforoush, M. and Kazemi, M. (2018), "An investigation on the fresh and hardened properties of selfcompacting concrete incorporating magnetic water with various pozzolanic materials", Constr. Build. Mater., 158, 173-180. https://doi.org/10.1016/j.conbuildmat.2017.09.135
  44. Ghorpade, V.G. and Rao, H.S. (2018), "The Behaviour of Self Compacting Concrete With Waste Plastic Fibers When Subjected To Chloride Attack", Mater. Today: Proceedings, 5(1), 1501-1508. https://doi.org/10.1016/j.matpr.2017.11.239
  45. Guerrero, L.A., Maas, G. and Hogland, W. (2013), "Solid waste management challenges for cities in developing countries", Waste Manage., 33(1), 220-232. https://doi.org/10.1016/j.wasman.2012.09.008
  46. Hama, S.M. and Hilal, N.N. (2017), "Fresh properties of selfcompacting concrete with plastic waste as partial replacement of sand", Int. J. Sustain. Built Environ., 6(2), 299-308. https://doi.org/10.1016/j.ijsbe.2017.01.001
  47. Han, L.-H. and Yao, G.-H. (2004), "Experimental behaviour of thin-walled hollow structural steel (HSS) columns filled with self-consolidating concrete (SCC)", Thin-Walled Struct., 42(9), 1357-1377. https://doi.org/10.1016/j.tws.2004.03.016
  48. Hasan-Ghasemi, A. and Nematzadeh, M. (2021), "Tensile and compressive behavior of self-compacting concrete incorporating PET as fine aggregate substitution after thermal exposure: Experiments and modeling", Constr. Build. Mater., 289, 123067. https://doi.org/10.1016/j.conbuildmat.2021.123067
  49. Hasan-Ghasemi, A., Nematzadeh, M. and Fallahnejad, H. (2022), "Post-fire residual fracture characteristics and brittleness of selfcompacting concrete containing waste PET flakes: Experimental and theoretical investigation", Eng. Fract. Mech., 261, 108263. https://doi.org/10.1016/j.engfracmech.2022.108263
  50. Hilmioglu, H., Sengul, C. and Ozkul, M. (2022), "The effects of limestone powder and fly ash as an addition on fresh, elastic, inelastic and strength properties of self-compacting concrete", Adv. Concrete Constr., Int. J., 14(2), 93-102. https://doi.org/10.12989/acc.2022.14.2.093
  51. Hwang, C. and Tsai, C. (2005), "The effect of aggregate packing types on engineering properties of self-consolidating concrete", SCC.
  52. Hwang, S.-D., Khayat, K.H. and Bonneau, O. (2006), "Performance-based specifications of self-consolidating concrete used in structural applications", ACI Mater. J., 103(2), 121.
  53. Iucolano, F., Liguori, B., Caputo, D., Colangelo, F. and Cioffi, R. (2013), "Recycled plastic aggregate in mortars composition: Effect on physical and mechanical properties", Mater. Des., (1980-2015), 52, 916-922. https://doi.org/10.1016/j.matdes.2013.06.025
  54. Jaskowska-Lemanska, J., Kucharska, M., Matuszak, J., Nowak, P. and Lukaszczyk, W. (2022), "Selected Properties of Self- Compacting Concrete with Recycled PET Aggregate", Materials, 15(7), 2566. https://doi.org/10.3390/ma15072566
  55. Kantar, E., Yuen, T.Y., Kobya, V. and Kuang, J. (2017), "Impact dynamics and energy dissipation capacity of fibre-reinforced self-compacting concrete plates", Constr. Build. Mater., 138, 383-397. https://doi.org/10.1016/j.conbuildmat.2017.02.011
  56. Kardon, J.B. (1997), "Polymer-modified concrete", J. Mater. Civil Eng, 9(2), 85-92. https://doi.org/10.1061/(ASCE)0899-1561(1997)9:2(85)
  57. Khaleel, O. and Razak, H.A. (2014), "Mix design method for self compacting metakaolin concrete with different properties of coarse aggregate", Mater. Des., 53, 691-700. https://doi.org/10.1016/j.matdes.2013.07.072
  58. Khalid, F.S., Azmi, N.B., Mazenan, P.N., Shahidan, S., Othman, N.H. and Guntor, N.A.A. (2018), "Self-consolidating concretes containing waste PET bottles as sand replacement", AIP Conference Proceedings, Vol. 1930, No. 1. https://doi.org/10.1063/1.5022928
  59. Khan, S.U. and Ayub, T. (2020), "Flexure and shear behaviour of self-compacting reinforced concrete beams with polyethylene terephthalate fibres and strips", Structures, 25, 200-211. https://doi.org/10.1016/j.istruc.2020.02.023
  60. Khayat, K., Ghezal, A. and Hadriche, M. (2000), "Utility of statistical models in proportioning self-consolidating concrete", Mater. Struct., 33(5), 338-344. https://doi.org/10.1007/BF02479705
  61. Kheder, G.F. and Al Jadiri, R.S. (2010), "New method for proportioning self-consolidating concrete based on compressive strength requirements", ACI Mater. J., 107(5), 490.
  62. Klockner, C.A. (2013), "A comprehensive model of the psychology of environmental behaviour-A meta-analysis", Global Environ. Change, 23(5), 1028-1038. https://doi.org/10.1016/j.gloenvcha.2013.05.014
  63. Kohistani, A.S. and Singh, K. (2018), "An experimental investigation by utilizing plastic waste and alccofine in selfcompacting concrete", Indian J. Sci. Technol., 11(26), 1-14. https://doi.org/10.17485/ijst/2018/v11i26/130569
  64. Li, J., Yin, J., Zhou, S. and Li, Y. (2005), "Mix proportion calculation method of self-compacting high performance concrete", Proceedings of the First International Symposium on Design, Performance and Use of Self-Consolidating SCC.
  65. Li, P., Ran, J., Nie, D. and Zhang, W. (2021), "Improvement of mix design method based on paste rheological threshold theory for self-compacting concrete using different mineral additions in ternary blends of powders", Constr. Build. Mater., 276, 122194. https://doi.org/10.1016/j.conbuildmat.2020.122194
  66. Li, P., Ran, J., An, X., Bai, H., Nie, D., Zhang, J. and Shao, K. (2022), "An enhanced mix-design method for self-compacting concrete based on paste rheological threshold theory and equivalent mortar film thickness theories", Constr. Build. Mater., 347, 128573. https://doi.org/10.1016/j.conbuildmat.2022.128573
  67. Long, G., Gao, Y. and Xie, Y. (2015), "Designing more sustainable and greener self-compacting concrete", Constr. Build. Mater., 84, 301-306. https://doi.org/10.1016/j.conbuildmat.2015.02.072
  68. Madandoust, R., Ranjbar, M. and Moshiri, A. (2014), "The effects of steel and pet fibers on the properties of fresh and hardened self-compacting concrete", Asian J. Civil Eng. (BHRC), 15(5), 671-682.
  69. Majeed, S.S., Haido, J.H., Atrushi, D.S., Al-Kamaki, Y., Dinkha, Y.Z., Saadullah, S.T. and Tayeh, B.A. (2021), "Properties of self-compacted concrete incorporating basalt fibers: Experimental study and Gene Expression Programming (GEP) analysis", Comput. Concrete, Int. J., 28(5), 451-463. https://doi.org/10.12989/cac.2021.28.5.451
  70. Marzouk, O.Y., Dheilly, R. and Queneudec, M. (2007), "Valorization of post-consumer waste plastic in cementitious concrete composites", Waste Manage., 27(2), 310-318. https://doi.org/10.1016/j.wasman.2006.03.012
  71. Milehsara, D., Nik, S., Omran, L. and Sadrmomtazi, A. (2015), "The combined effects of waste PET particles and pozzolanic materials on the properties of self-compacting concrete", J. Cleaner Prod., 1-17.
  72. Mohammadinia, A., Wong, Y.C., Arulrajah, A. and Horpibulsuk, S. (2019), "Strength evaluation of utilizing recycled plastic waste and recycled crushed glass in concrete footpaths", Constr. Build. Mater., 197, 489-496. https://doi.org/10.1016/j.conbuildmat.2018.11.192
  73. Mohammed, M.K., Al-Hadithi, A.I. and Mohammed, M.H. (2019), "Production and optimization of eco-efficient self compacting concrete SCC with limestone and PET", Constr. Build. Mater., 197, 734-746. https://doi.org/10.1016/j.conbuildmat.2018.11.189
  74. Mueller, F.V., Wallevik, O.H. and Khayat, K.H. (2016), "Robustness of low-binder SCC (Eco-SCC), lean SCC, and binder-rich SCC", Proceedings of the 8th International RILEM Symposium on Self-Consolidating Concrete, Washington DC.
  75. Nielsson, I. and Wallevik, O. (2003), "Mix Design of HS-SCC and Practical application", In: Self-Compacting Concrete; Proceedings of the 3rd International RILEM Symposium, (Eds. Wallevik O, Nielsson I), RILEM Publication, pp. 506-513.
  76. Ochi, T., Okubo, S. and Fukui, K. (2007), "Development of recycled PET fiber and its application as concrete-reinforcing fiber", Cement Concrete Compos., 29(6), 448-455. https://doi.org/10.1016/j.cemconcomp.2007.02.002
  77. Oghabi, M. and Khoshvatan, M. (2020), "The laboratory experiment of the effect of quantity and length of plastic fiber on compressive strength and tensile resistance of selfcompacting concrete", KSCE J. Civil Eng., 24(8), 2477-2484. https://doi.org/10.1007/s12205-020-1578-9
  78. Ohama, Y. (1997), "Recent progress in concrete-polymer composites", Adv. Cement Based Mater., 5(2), 31-40. https://doi.org/10.1016/S1065-7355(96)00005-3
  79. Okamura, H. and Ozawa, K. (1995), "Mix design for selfcompacting concrete", Concrete library of JSCE, 25(6), 107-120.
  80. Ozawa, K. (1989), "High-performance concrete based on the durability design of concrete structures", Proceedings of the Second East Asia-Pacific Conference on Structural Engineering and Construction.
  81. Ozbay, E., Oztas, A., Baykasoglu, A. and Ozbebek, H. (2009), "Investigating mix proportions of high strength self compacting concrete by using Taguchi method", Constr. Build. Mater., 23(2), 694-702. https://doi.org/10.1016/j.conbuildmat.2008.02.014
  82. Paliwal, G. and Maru, S. (2017), "Effect of fly ash and plastic waste on mechanical and durability properties of concrete", Adv. Concrete Constr., Int. J., 5(6), 575-586. https://doi.org/10.12989/acc.2017.5.6.575
  83. Plastics Europe (2020), "An analysis of European plastics production, demand and waste data", www.plasticseurope.org Rai, B., Rushad, S.T., Kr, B. and Duggal, S. (2012), "Study of waste plastic mix concrete with plasticizer", Int. Scholar. Res. Notices. https://doi.org/10.5402/2012/469272
  84. Rai, B., Rushad, S.T., Kr, B. and Duggal, S. (2012), "Study of waste plastic mix concrete with plasticizer", Int. Scholar. Res. Notices. https://doi.org/10.5402/2012/469272
  85. Remadnia, A., Dheilly, R., Laidoudi, B. and Queneudec, M. (2009), "Use of animal proteins as foaming agent in cementitious concrete composites manufactured with recycled PET aggregates", Constr. Build. Mater., 23(10), 3118-3123. https://doi.org/10.1016/j.conbuildmat.2009.06.027
  86. Saak, A.W., Jennings, H.M. and Shah, S.P. (2001), "New methodology for designing self-compacting concrete", Mater. J., 98(6), 429-439. https://doi.org/10.14359/10841
  87. Sadrmomtazi, A. and Tahmouresi, B. (2017), "Effect of fiber on mechanical properties and toughness of self-compacting concrete exposed to high temperatures", AUT J. Civil Eng., 1(2), 153-166. https://doi.org/10.22060/CEEJ.2017.12631.5236
  88. Sadrmomtazi, A., Dolati-Milehsara, S., Lotfi-Omran, O. and Sadeghi-Nik, A. (2016), "The combined effects of waste Polyethylene Terephthalate (PET) particles and pozzolanic materials on the properties of self-compacting concrete", J. Cleaner Prod., 112, 2363-2373. https://doi.org/10.1016/j.jclepro.2015.09.107
  89. Safi, B., Saidi, M., Aboutaleb, D. and Maallem, M. (2013), "The use of plastic waste as fine aggregate in the self-compacting mortars: Effect on physical and mechanical properties", Constr. Build. Mater., 43, 436-442. https://doi.org/10.1016/j.conbuildmat.2013.02.049
  90. Saikia, N. and De Brito, J. (2012), "Use of plastic waste as aggregate in cement mortar and concrete preparation: A review", Constr. Build. Mater., 34, 385-401. https://doi.org/10.1016/j.conbuildmat.2012.02.066
  91. Saikia, N. and De Brito, J. (2014), "Mechanical properties and abrasion behaviour of concrete containing shredded PET bottle waste as a partial substitution of natural aggregate", Constr. Build. Mater., 52, 236-244. https://doi.org/10.1016/j.conbuildmat.2013.11.049
  92. Shi, C., Wu, Z., Lv, K. and Wu, L. (2015), "A review on mixture design methods for self-compacting concrete", Constr. Build. Mater., 84, 387-398. https://doi.org/10.1016/j.conbuildmat.2015.03.079
  93. Siddique, R., Khatib, J. and Kaur, I. (2008), "Use of recycled plastic in concrete: A review", Waste Manage., 28(10), 1835-1852. https://doi.org/10.1016/j.wasman.2007.09.011
  94. Sonebi, M. (2004), "Medium strength self-compacting concrete containing fly ash: Modelling using factorial experimental plans", Cement Concrete Res., 34(7), 1199-208. https://doi.org/10.1016/j.cemconres.2003.12.022
  95. Sri Rama Chand, M., Radhika, K.L., Rathish Kumar, P. and Rakesh, S. (2017), "Mix model for self-compacting concrete with recycled aggregate", Proceedings of the Institution of Civil Engineers-Structures and Buildings, 170(2), 131-142. https://doi.org/10.1680/jstbu.16.00076
  96. Su, N., Hsu, K.-C. and Chai, H.-W. (2001), "A simple mix design method for self-compacting concrete", Cement Concrete Res., 31(12), 1799-1807. https://doi.org/10.1016/S0008-8846(01)00566-X
  97. Sulyman, M., Haponiuk, J. and Formela, K. (2016), "Utilization of recycled polyethylene terephthalate (PET) in engineering materials: a review", Int. J. Environ. Sci. Develop., 7(2), 100. https://doi.org/10.7763/IJESD.2016.V7.749
  98. Tayeh, B.A., Almeshal, I., Magbool, H.M., Alabduljabbar, H. and Alyousef, R. (2021), "Performance of sustainable concrete containing different types of recycled plastic", J. Cleaner Prod., 328, 129517. https://doi.org/10.1016/j.jclepro.2021.129517
  99. UNEP (2014), The United Nations Environment Programme. https://www.unep.org
  100. Wu, Q. and An, X. (2014), "Development of a mix design method for SCC based on the rheological characteristics of paste", Constr. Build. Mater., 53, 642-651. https://doi.org/10.1016/j.conbuildmat.2013.12.008
  101. Yang, S., Yue, X., Liu, X. and Tong, Y. (2015), "Properties of selfcompacting lightweight concrete containing recycled plastic particles", Constr. Build. Mater., 84, 444-453. https://doi.org/10.1016/j.conbuildmat.2015.03.038
  102. Yoshinobu, E., Takumi, S. and Ouchi, M. (2003), "A mix-design method for self-compacting concrete based on mortar flow and funnel tests", Proceedings of the 3rd International RILEM Symposium on Self-Compacting Concrete, Reykjavik, Iceland.
  103. Zhang, H. and Wen, Z.-G. (2014), "The consumption and recycling collection system of PET bottles: A case study of Beijing, China", Waste Manage., 34(6), 987-998. https://doi.org/10.1016/j.wasman.2013.07.015