DOI QR코드

DOI QR Code

Optimization for trapezoidal combined footings: Optimal design

  • 투고 : 2020.04.11
  • 심사 : 2023.08.11
  • 발행 : 2023.07.25

초록

This work presents a complete optimal model for trapezoidal combined footings that support a concentric load and moments around of the "X" and "Y" axes in each column to obtain the minimum area and the minimum cost. The model presented in this article considers a pressure diagram that has a linear variation (real pressure) and the equations are not limited to some cases. The classic model takes into account a concentric load and the moment around of the "X" axis (transverse axis) that is applied due to each column, i.e., the resultant force is located at the geometric center of the footing on the "Y" axis (longitudinal axis), and when the concentric load and moments around of the "X" and "Y" axes act on the footing is considered the uniform pressure applied on the contact surface of the footing, and it is the maximum pressure. Four numerical problems are presented to find the optimal design of a trapezoidal combined footing under a concentric load and moments around of the "X" and "Y" axes due to the columns: Case 1 not limited in the direction of the Y axis; Case 2 limited in the direction of the Y axis in column 1; Case 3 limited in the direction of the Y axis in column 2; Case 4 limited in the direction of the Y axis in columns 1 an 2. The complete optimal design in terms of cost optimization for the trapezoidal combined footings can be used for the rectangular combined footings considering the uniform width of the footing in the transversal direction, and also for different reinforced concrete design codes, simply by modifying the resisting capacity equations for moment, for bending shear, and for the punching shear, according to each of the codes.

키워드

참고문헌

  1. ACI 318-14 (2014), Building Code Requirements for Structural Concrete and Commentary; Committee 318, New York: American Concrete Institute.
  2. Agrawal, R. and Hora, M.S. (2012), "Nonlinear interaction behaviour of infilled frame-isolated footings-soil system subjected to seismic loading", Struct. Eng. Mech., Int. J., 44(1), 85-107. https://doi.org/10.12989/sem.2012.44.1.085
  3. Al-Ansari, M.S. (2013), "Structural cost of optimized reinforced concrete isolated footing", Int. Scholar. Scientif. Res. Innov., 7(4), 193-200. https://zenodo.org/record/1080444#.Xkth1GhKiUk 1080444#.Xkth1GhKiUk
  4. Al-Ansari, M.S. (2014), "Cost of reinforced concrete paraboloid shell footing", Int. J. Struct. Analys. Des., 1(3), 111-119. http://journals.theired.org/assets/pdf/20141006_094159.pdf 1006_094159.pdf
  5. Alazwari, M.A., Daikh, A.A., Houari, M.S.A., Tounsi, A. and Eltaher, M.A. (2021), "On static buckling of multilayered carbon nanotubes reinforced composite nanobeams supported on non-linear elastic foundations", Steel Compos. Struct., Int. J., 40(3), 389-404. https://doi.org/10.12989/scs.2021.40.3.389
  6. Alijani, M. and Bidgoli, M.R. (2018), "Agglomerated SiO2 nanoparticles reinforced-concrete foundations based on higher order shear deformation theory: Vibration analysis", Adv. Concrete Constr., Int. J., 6(6), 585-610. https://doi.org/10.12989/acc.2018.6.6.585
  7. Anil, O, Akbas, S.O., Babagiray, S., Gel, A.C. and Durucan, C. (2017), "Experimental and finite element analyses of footings of varying shapes on sand", Geomech. Eng., Int. J., 12(2), 223-238. https://doi.org/10.12989/gae.2017.12.2.223
  8. Basudhar, P.K., Dey, A. and Mondal, A.S. (2012), "Optimal Cost- Analysis and Design of Circular Footings", Int. J. Eng. Technol. Innov., 2(4), 243-264. https://pdfs.semanticscholar.org/158d/d842b78d4efdf970070d34e94b34645a68ec.pdf
  9. Bensaid, I. and Kerboua, B. (2019), "Improvement of thermal buckling response of FG-CNT reinforced composite beams with temperature-dependent material properties resting on elastic foundations", Adv. Aircr. Spacecr. Sci., Int. J., 6(3), 207-223. https://doi.org/10.12989/aas.2019.6.3.207
  10. Chaudhuri, P. and Maity, D. (2020), "Cost optimization of rectangular RC footing using GA and UPSO", Soft Computing, 24, 709-721. https://link.springer.com/article/10.1007/s00500-019-04437-x
  11. Chen, W-R., Chen, C-S and Yu, S-Y. (2011), "Nonlinear vibration of hybrid composite plates on elastic foundations", Struct. Eng. Mech., Int. J., 37(4), 367-383. https://doi.org/10.12989/sem.2011.37.4.367
  12. Dezhkam, B. and Yaghfoori, A. (2018), "Soil foundation effect on the vibration response of concrete foundations using mathematical model", Comput. Concrete, Int. J., 22(2), 221-225. https://doi.org/10.12989/cac.2018.22.2.221
  13. Garay-Gallegos, J.R., Luevanos-Rojas, A., Lopez-Chavarria, S., Medina-Elizondo, M., Aguilera-Mancilla, G. and Garcia- Canales, E. (2022), "A comparative study between the new model and the current model for T-shaped combined footings", Geomech. Eng., Int. J., 30(6), 525-538. https://doi.org/10.12989/gae.2022.30.6.525
  14. Garcia-Galvan, M., Luevanos-Rojas, A., Lopez-Chavarria, S., Medina-Elizondo, M. and Rivera-Mendoza, J.B. (2022), "A comparative study between trapezoidal combined footings and T-shaped combined footings", Coupled Syst. Mech., Int. J., 11(3), 233-257. https://doi.org/10.12989/csm.2022.11.3.233
  15. Gor, M. (2022), "Analyzing the bearing capacity of shallow foundations on two-layered soil using two novel cosmologybased optimization techniques", Smart Struct. Syst., Int. J., 29(3), 513-522. https://doi.org/10.12989/sss.2022.29.3.513
  16. Guler, K. and Celep, Z. (2005), "Response of a rectangular plate-column system on a tensionless Winkler foundation subjected to static and dynamic loads", Struct. Eng. Mech., Int. J., 21(6), 699-712. https://doi.org/10.12989/sem.2005.21.6.699
  17. Hassaan, G.A. (2014), "Optimal design of machinery shallow foundations with sand soils", Int. J. Res. Eng. Technol., 3(5), 1-8. https://scholar.cu.edu.eg/?q=galal/files/founddesign_sand.pdf
  18. Himeur, N., Mamen, B., Benguediab, S., Bouhadra, A., Menasria, A., Bouchouicha, B., Bourada, F., Benguediab, M. and Tounsi, A. (2022), "Coupled effect of variable Winkler-Pasternak foundations on bending behavior of FG plates exposed to several types of loading", Steel Compos. Struct., Int. J., 44(3), 353-369. https://doi.org/10.12989/scs.2022.44.3.353
  19. Jelusic, P. and Zlender, B. (2018), "Optimal design of pad footing based on MINLP optimization", Soils Found., 58(2), 277-289. https://doi.org/10.1016/j.sandf.2018.02.002
  20. Kalinli, A., Acar, C. and Gunduz, Z. (2011), "New approaches to determine the ultimate bearing capacity of shallow foundations based on artificial neural networks and antcolony optimization", Eng. Geol., 117(1-2), 29-38. https://doi.org/10.1016/j.enggeo.2010.10.002
  21. Kashani, A.R., Camp, C.V., Akhani, M. and Ebrahimi, S. (2022), "Optimum design of combined footings using swarm intelligence-based algorithms", Adv. Eng. Softw., 169, 103140. https://doi.org/10.1016/j.advengsoft.2022.103140
  22. Keawsawasvong, S. and Ukritchon, B. (2016), "A Practical Method for the Optimal Design of Continuous Footing Using Ant-Colony Optimization", Acta Geotech. Slov., 13(2), 45-55. https://dk.um.si/IzpisGradiva.php?id=70877
  23. Khajehzadeh, M., Taha, M.R., El-Shafie, A. and Eslami, M. (2012), "Optimization of shallow foundation using gravitational search algorithm", Res. J. Appl. Sci. Eng. Technol., 4(9),1124-1130. https://ukm.pure.elsevier.com/en/publications/optimization-ofshallow-foundation-using-gravitational-search-alg
  24. Khajehzadeh, M., Taha, M.R. and Eslami, M. (2014), "Multiobjective optimization of foundation using global-local gravitational search algorithm", Struct. Eng. Mech., Int. J., 50(3), 257-273. https://doi.org/10.12989/sem.2014.50.3.257
  25. Khatri, V.N., Debbarma, S.P., Dutta, R.K. and Mohanty, B. (2017), "Pressure-settlement behavior of square and rectangular skirted footings resting on sand", Geomech. Eng., Int. J., 12(4), 689-705. https://doi.org/10.12989/gae.2017.12.4.689
  26. Lezgy-Nazargah, M., Mamazizi, A. and Khosravi, H. (2022), "Analysis of shallow footings rested on tensionless foundations using a mixed finite element model", Struct. Eng. Mech., Int. J., 81(3), 379-394. https://doi.org/10.12989/sem.2022.81.3.379
  27. Lins da Silva, J., Aoki, N. and Barbosa Franco, Y. (2017), "Use of the order statistics when predicting pile foundation failure probability", Dyn., 84(200), 247-252. http://dx.doi.org/10.15446/dyna.v84n200.54867
  28. Lopez-Chavarria, S., Luevanos-Rojas, A. and Medina-Elizondo, M. (2017), "A new mathematical model for design of square isolated footings for general case", Int. J. Innov. Comput. I., 13(4), 1149-1168. http://www.ijicic.org/ijicic-130406.pdf
  29. Lopez-Chavarria, S., Luevanos-Rojas, A., Medina-Elizondo, M., Sandoval-Rivas, R. and Velazquez-Santillan, F. (2019), "Optimal design for the reinforced concrete circular isolated footings", Adv. Comput. Des., Int. J., 4(3), 169-183. https://doi.org/10.12989/acd.2019.4.3.273
  30. Lu, X. and Aboutaha, R.S. (2021), "Strengthening of isolated square FOOTINGS using passive wrapping systems", Comput. Concrete., 27(1), 41-54. https://doi.org/10.12989/cac.2021.27.1.041
  31. Luevanos-Rojas, A. (2014a), "Design of isolated footings of circular form using a new model", Struct. Eng. Mech., Int. J., 52(4), 767-786. http://dx.doi.org/10.12989/sem.2014.52.4.767
  32. Luevanos-Rojas, A. (2014b), "Design of boundary combined footings of rectangular shape using a new model", Dyn., 81(188), 199-208. http://dx.doi.org/10.15446/dyna.v81n188.41800
  33. Luevanos-Rojas, A. (2015a), "Design of boundary combined footings of trapezoidal form using a new model", Struct. Eng. Mech., Int. J., 56(5), 745-765. https://doi.org/10.12989/sem.2015.56.5.745
  34. Luevanos-Rojas, A. (2015b), "A new mathematical model for dimensioning of the boundary trapezoidal combined footings", Int. J. Innov. Comput. I., 11(4), 1269-1279. http://www.ijicic.org/ijicic-110411.pdf 10411.pdf
  35. Luevanos-Rojas, A. (2016a), "A comparative study for the design of rectangular and circular isolated footings using new models", Dyn., 83(196), 149-158. http://dx.doi.org/10.15446/dyna.v83n196.51056
  36. Luevanos-Rojas, A. (2016b), "A new model for the design of rectangular combined boundary footings with two restricted opposite sides", Alconpat Journal, 6(2), 172-187. http://dx.doi.org/10.21041/ra.v6i2.137
  37. Luevanos-Rojas, A., Faudoa-Herrera, J.G., Andrade-Vallejo, R.A. and Cano-Alvarez, M.A. (2013), "Design of isolated footings of rectangular form using a new model", Int. J. Innov. Comput. I., 9(10), 4001-4022. http://www.ijicic.org/ijicic-12-10031.pdf 10031.pdf
  38. Luevanos-Rojas, A., Lopez-Chavarria, S. and Medina-Elizondo, M. (2017a), "Optimal design for rectangular isolated footings using the real soil pressure", Ing. Invest., 37(2), 25-33. http://dx.doi.org/10.15446/ing.investig.v37n2.61447
  39. Luevanos-Rojas, A., Barquero-Cabrero, J.D., Lopez-Chavarria, S. and Medina-Elizondo, M. (2017b), "A comparative study for design of boundary combined footings of trapezoidal and rectangular forms using new models", Coupled Syst. Mech., Int. J., 6(4), 417-437. https://doi.org/10.12989/csm.2017.6.4.417
  40. Luevanos-Rojas, A., Lopez-Chavarria, S. and Medina-Elizondo, M. (2018), "A new model for T-shaped combined footings Part II: Mathematical model for design", Geomech. Eng., Int. J., 14(1), 61-69. https://doi.org/10.12989/gae.2018.14.1.061
  41. Maheshwari, P. and Khatri, S. (2012), "Influence of inclusion of geosynthetic layer on response of combined footings on stone column reinforced earth beds", Geomech. Eng., Int. J., 4(4), 263-279. https://doi.org/10.12989/gae.2012.4.4.263
  42. Malapur, M.M., Cholappanavar, P. and Fernandes, R.J. (2018), "Optimization of RC column and footings using genetic algorithm", Int. Res. J. Eng. Technol. (IRJET), 5(8), 546-552. https://www.irjet.net/archives/V5/i8/IRJET-V5I897.pdf
  43. Mohamed, F.M.O., Vanapalli, S.K. and Saatcioglu, M. (2013), "Generalized Schmertmann Equation for settlement estimation of shallow footings in saturated and unsaturated sands", Geomech. Eng., Int. J., 5(4), 363-377. https://doi.org/10.12989/gae.2013.5.4.343
  44. Mohebkhah, A. (2017), "Bearing capacity of stripfootingson a stone masonry trench in clay", Geomech. Eng., Int. J., 13(2), 255-267. https://doi.org/10.12989/gae.2017.13.2.255
  45. Orbanich, C.J. and Ortega, N.F. (2013), "Analysis of elastic foundation plates with internal and perimetric stiffening beams on elastic foundations by using Finite Differences Method", Struct. Eng. Mech., Int. J., 45(2), 169-182. https://doi.org/10.12989/sem.2013.45.2.169
  46. Orbanich, C.J., Dominguez, P.N. and Ortega, N.F. (2012), "Strenghtening and repair of concrete foundation beams whit fiber composite materials", Mater. Struct., 45(11), 1693-1704. https://doi.org/10.1617/s11527-012-9866-6
  47. Pasillas-Orona, A.I., Luevanos-Rojas, A., Lopez-Chavarria, S., Medina-Elizondo, M. and Aguilera-Mancilla, G. (2020), "Un modelo optimizado para zapatas combinadas trapezoidales apoyadas sobre el terreno: Superficie optima", Acta Universitaria, 30, e2973. http://doi.org/10.15174.au.2020.2973 https://doi.org/10.15174.au.2020.2973
  48. Rad, A.B. (2012), "Static response of 2-D functionally graded circular plate with gradient thickness and elastic foundations to compound loads", Struct. Eng. Mech., Int. J., 44(2), 139-161. https://doi.org/10.12989/sem.2012.44.2.139
  49. Rawat, S. and Mittal, R.K. (2018),"Optimization of Eccentrically Loaded Reinforced-Concrete Isolated Footings", Practice Period. Struct. Des. Constr., 23(2). https://doi.org/10.1061/(ASCE)SC.1943-5576.0000366
  50. Rizwan, M., Alam, B., Rehman, F.U., Masud, N., Shahzada, K., Masud, T. (2012), "Cost Optimization of Combined Footings Using Modified Complex Method of Box", Int. J. Adv. Struct. Geotech. Eng., 1(1), 24-28. https://www.academia.edu/20635751/Cost_Optimization_of_Combined_Footings_Using_Modified_Complex_Method_of_Box
  51. Shahin, M.A. and Cheung, E.M. (2011), "Stochastic design charts for bearing capacity of strip footings", Geomech. Eng., Int. J., 3(2), 153-167. https://doi.org/10.12989/gae.2011.3.2.153
  52. Smith-Pardo, J.P. (2011), "Performance-based framework for soilstructure systems using simplified rocking foundation models", Struct. Eng. Mech., Int. J., 40(6), 763-782. https://doi.org/10.12989/sem.2011.40.6.763
  53. Soltani, K., Bessaim, A., Houari, M.S.A., Kaci, A., Benguediab, M., Tounsi, A. and Alhodaly, M.S. (2019), "A novel hyperbolic shear deformation theory for the mechanical buckling analysis of advanced composite plates resting on elastic foundations", Steel Compos. Struct., Int. J., 30(1), 13-29. https://doi.org/10.12989/scs.2019.30.1.013
  54. Turedi, Y., Emirler, B., Ornek, M. and Yildiz, A. (2019), "Determination of the bearing capacity of model ring footings: Experimental and numerical investigations", Geomech. Eng., Int. J., 18(1), 29-39. https://doi.org/10.12989/gae.2019.18.1.029
  55. Uncuoglu, E. (2015), "The bearing capacity of square footings on a sand layer overlying clay", Geomech. Eng., Int. J., 9(3), 287-311. https://doi.org/10.12989/gae.2015.9.3.287
  56. Velazquez-Santillan, F., Luevanos-Rojas, A., Lopez-Chavarria, S., Medina-Elizondo, M. and Sandoval-Rivas, R. (2018), "Numerical experimentation for the optimal design for reinforced concrete rectangular combined footings", Adv. Comput. Des., Int. J., 3(1), 49-69. https://doi.org/10.12989/acd.2018.3.1.049
  57. Wang, Y. (2009), "Reliability-based economic design optimization of spread foundations", J. Geotech. Geoenviron., 135(7), 954-959. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000013
  58. Wang, Y. and Kulhawy, F.H. (2008), "Economic Design Optimization of Foundation", J. Geotech. Geoenviron., 134(8), 1097-1105. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:8(1097)
  59. Yanez-Palafox, J.A., Luevanos-Rojas, A., Lopez-Chavarria, S. and Medina-Elizondo, M. (2019), "Modeling for the strap combined footings Part II: Mathematical model for design", Steel Compos. Struct., Int. J., 30(2), 109-121. https://doi.org/10.12989/scs.2019.30.2.109
  60. Yeh, J.-P. and Huang, K.-H. (2016), "Application of Genetic Algorithms Coupled with Neural Networks to Optimization of Reinforced Concrete Footings", Transact. Mach. Learn. Artif. Intell., 4(4), 18-35. https://journals.scholarpublishing.org/index.php/TMLAI/article/view/2150
  61. Yeh, J.-P. and Huang, K.-H. (2017), "Effects of Strengths of Steel and Concrete, Eccentricity and Bar Size on the Optimization of Eccentrically Loaded Footings", Transact. Mach. Learn. Artif. Intell., 5(5), 87-97. https://journals.scholarpublishing.org/index.php/TMLAI/issue/view/169/218
  62. Zhang, L., Zhao, M.H., Xiao, Y. and Ma, B.H. (2011), "Nonlinear analysis of finite beam resting on Winkler with consideration of beam-soil interface resistance effect", Struct. Eng. Mech., Int. J., 38(5), 573-592. https://doi.org/10.12989/sem.2011.38.5.573