참고문헌
- ACI 318-14 (2014), Building Code Requirements for Structural Concrete and Commentary; Committee 318, New York: American Concrete Institute.
- Agrawal, R. and Hora, M.S. (2012), "Nonlinear interaction behaviour of infilled frame-isolated footings-soil system subjected to seismic loading", Struct. Eng. Mech., Int. J., 44(1), 85-107. https://doi.org/10.12989/sem.2012.44.1.085
- Al-Ansari, M.S. (2013), "Structural cost of optimized reinforced concrete isolated footing", Int. Scholar. Scientif. Res. Innov., 7(4), 193-200. https://zenodo.org/record/1080444#.Xkth1GhKiUk 1080444#.Xkth1GhKiUk
- Al-Ansari, M.S. (2014), "Cost of reinforced concrete paraboloid shell footing", Int. J. Struct. Analys. Des., 1(3), 111-119. http://journals.theired.org/assets/pdf/20141006_094159.pdf 1006_094159.pdf
- Alazwari, M.A., Daikh, A.A., Houari, M.S.A., Tounsi, A. and Eltaher, M.A. (2021), "On static buckling of multilayered carbon nanotubes reinforced composite nanobeams supported on non-linear elastic foundations", Steel Compos. Struct., Int. J., 40(3), 389-404. https://doi.org/10.12989/scs.2021.40.3.389
- Alijani, M. and Bidgoli, M.R. (2018), "Agglomerated SiO2 nanoparticles reinforced-concrete foundations based on higher order shear deformation theory: Vibration analysis", Adv. Concrete Constr., Int. J., 6(6), 585-610. https://doi.org/10.12989/acc.2018.6.6.585
- Anil, O, Akbas, S.O., Babagiray, S., Gel, A.C. and Durucan, C. (2017), "Experimental and finite element analyses of footings of varying shapes on sand", Geomech. Eng., Int. J., 12(2), 223-238. https://doi.org/10.12989/gae.2017.12.2.223
- Basudhar, P.K., Dey, A. and Mondal, A.S. (2012), "Optimal Cost- Analysis and Design of Circular Footings", Int. J. Eng. Technol. Innov., 2(4), 243-264. https://pdfs.semanticscholar.org/158d/d842b78d4efdf970070d34e94b34645a68ec.pdf
- Bensaid, I. and Kerboua, B. (2019), "Improvement of thermal buckling response of FG-CNT reinforced composite beams with temperature-dependent material properties resting on elastic foundations", Adv. Aircr. Spacecr. Sci., Int. J., 6(3), 207-223. https://doi.org/10.12989/aas.2019.6.3.207
- Chaudhuri, P. and Maity, D. (2020), "Cost optimization of rectangular RC footing using GA and UPSO", Soft Computing, 24, 709-721. https://link.springer.com/article/10.1007/s00500-019-04437-x
- Chen, W-R., Chen, C-S and Yu, S-Y. (2011), "Nonlinear vibration of hybrid composite plates on elastic foundations", Struct. Eng. Mech., Int. J., 37(4), 367-383. https://doi.org/10.12989/sem.2011.37.4.367
- Dezhkam, B. and Yaghfoori, A. (2018), "Soil foundation effect on the vibration response of concrete foundations using mathematical model", Comput. Concrete, Int. J., 22(2), 221-225. https://doi.org/10.12989/cac.2018.22.2.221
- Garay-Gallegos, J.R., Luevanos-Rojas, A., Lopez-Chavarria, S., Medina-Elizondo, M., Aguilera-Mancilla, G. and Garcia- Canales, E. (2022), "A comparative study between the new model and the current model for T-shaped combined footings", Geomech. Eng., Int. J., 30(6), 525-538. https://doi.org/10.12989/gae.2022.30.6.525
- Garcia-Galvan, M., Luevanos-Rojas, A., Lopez-Chavarria, S., Medina-Elizondo, M. and Rivera-Mendoza, J.B. (2022), "A comparative study between trapezoidal combined footings and T-shaped combined footings", Coupled Syst. Mech., Int. J., 11(3), 233-257. https://doi.org/10.12989/csm.2022.11.3.233
- Gor, M. (2022), "Analyzing the bearing capacity of shallow foundations on two-layered soil using two novel cosmologybased optimization techniques", Smart Struct. Syst., Int. J., 29(3), 513-522. https://doi.org/10.12989/sss.2022.29.3.513
- Guler, K. and Celep, Z. (2005), "Response of a rectangular plate-column system on a tensionless Winkler foundation subjected to static and dynamic loads", Struct. Eng. Mech., Int. J., 21(6), 699-712. https://doi.org/10.12989/sem.2005.21.6.699
- Hassaan, G.A. (2014), "Optimal design of machinery shallow foundations with sand soils", Int. J. Res. Eng. Technol., 3(5), 1-8. https://scholar.cu.edu.eg/?q=galal/files/founddesign_sand.pdf
- Himeur, N., Mamen, B., Benguediab, S., Bouhadra, A., Menasria, A., Bouchouicha, B., Bourada, F., Benguediab, M. and Tounsi, A. (2022), "Coupled effect of variable Winkler-Pasternak foundations on bending behavior of FG plates exposed to several types of loading", Steel Compos. Struct., Int. J., 44(3), 353-369. https://doi.org/10.12989/scs.2022.44.3.353
- Jelusic, P. and Zlender, B. (2018), "Optimal design of pad footing based on MINLP optimization", Soils Found., 58(2), 277-289. https://doi.org/10.1016/j.sandf.2018.02.002
- Kalinli, A., Acar, C. and Gunduz, Z. (2011), "New approaches to determine the ultimate bearing capacity of shallow foundations based on artificial neural networks and antcolony optimization", Eng. Geol., 117(1-2), 29-38. https://doi.org/10.1016/j.enggeo.2010.10.002
- Kashani, A.R., Camp, C.V., Akhani, M. and Ebrahimi, S. (2022), "Optimum design of combined footings using swarm intelligence-based algorithms", Adv. Eng. Softw., 169, 103140. https://doi.org/10.1016/j.advengsoft.2022.103140
- Keawsawasvong, S. and Ukritchon, B. (2016), "A Practical Method for the Optimal Design of Continuous Footing Using Ant-Colony Optimization", Acta Geotech. Slov., 13(2), 45-55. https://dk.um.si/IzpisGradiva.php?id=70877
- Khajehzadeh, M., Taha, M.R., El-Shafie, A. and Eslami, M. (2012), "Optimization of shallow foundation using gravitational search algorithm", Res. J. Appl. Sci. Eng. Technol., 4(9),1124-1130. https://ukm.pure.elsevier.com/en/publications/optimization-ofshallow-foundation-using-gravitational-search-alg
- Khajehzadeh, M., Taha, M.R. and Eslami, M. (2014), "Multiobjective optimization of foundation using global-local gravitational search algorithm", Struct. Eng. Mech., Int. J., 50(3), 257-273. https://doi.org/10.12989/sem.2014.50.3.257
- Khatri, V.N., Debbarma, S.P., Dutta, R.K. and Mohanty, B. (2017), "Pressure-settlement behavior of square and rectangular skirted footings resting on sand", Geomech. Eng., Int. J., 12(4), 689-705. https://doi.org/10.12989/gae.2017.12.4.689
- Lezgy-Nazargah, M., Mamazizi, A. and Khosravi, H. (2022), "Analysis of shallow footings rested on tensionless foundations using a mixed finite element model", Struct. Eng. Mech., Int. J., 81(3), 379-394. https://doi.org/10.12989/sem.2022.81.3.379
- Lins da Silva, J., Aoki, N. and Barbosa Franco, Y. (2017), "Use of the order statistics when predicting pile foundation failure probability", Dyn., 84(200), 247-252. http://dx.doi.org/10.15446/dyna.v84n200.54867
- Lopez-Chavarria, S., Luevanos-Rojas, A. and Medina-Elizondo, M. (2017), "A new mathematical model for design of square isolated footings for general case", Int. J. Innov. Comput. I., 13(4), 1149-1168. http://www.ijicic.org/ijicic-130406.pdf
- Lopez-Chavarria, S., Luevanos-Rojas, A., Medina-Elizondo, M., Sandoval-Rivas, R. and Velazquez-Santillan, F. (2019), "Optimal design for the reinforced concrete circular isolated footings", Adv. Comput. Des., Int. J., 4(3), 169-183. https://doi.org/10.12989/acd.2019.4.3.273
- Lu, X. and Aboutaha, R.S. (2021), "Strengthening of isolated square FOOTINGS using passive wrapping systems", Comput. Concrete., 27(1), 41-54. https://doi.org/10.12989/cac.2021.27.1.041
- Luevanos-Rojas, A. (2014a), "Design of isolated footings of circular form using a new model", Struct. Eng. Mech., Int. J., 52(4), 767-786. http://dx.doi.org/10.12989/sem.2014.52.4.767
- Luevanos-Rojas, A. (2014b), "Design of boundary combined footings of rectangular shape using a new model", Dyn., 81(188), 199-208. http://dx.doi.org/10.15446/dyna.v81n188.41800
- Luevanos-Rojas, A. (2015a), "Design of boundary combined footings of trapezoidal form using a new model", Struct. Eng. Mech., Int. J., 56(5), 745-765. https://doi.org/10.12989/sem.2015.56.5.745
- Luevanos-Rojas, A. (2015b), "A new mathematical model for dimensioning of the boundary trapezoidal combined footings", Int. J. Innov. Comput. I., 11(4), 1269-1279. http://www.ijicic.org/ijicic-110411.pdf 10411.pdf
- Luevanos-Rojas, A. (2016a), "A comparative study for the design of rectangular and circular isolated footings using new models", Dyn., 83(196), 149-158. http://dx.doi.org/10.15446/dyna.v83n196.51056
- Luevanos-Rojas, A. (2016b), "A new model for the design of rectangular combined boundary footings with two restricted opposite sides", Alconpat Journal, 6(2), 172-187. http://dx.doi.org/10.21041/ra.v6i2.137
- Luevanos-Rojas, A., Faudoa-Herrera, J.G., Andrade-Vallejo, R.A. and Cano-Alvarez, M.A. (2013), "Design of isolated footings of rectangular form using a new model", Int. J. Innov. Comput. I., 9(10), 4001-4022. http://www.ijicic.org/ijicic-12-10031.pdf 10031.pdf
- Luevanos-Rojas, A., Lopez-Chavarria, S. and Medina-Elizondo, M. (2017a), "Optimal design for rectangular isolated footings using the real soil pressure", Ing. Invest., 37(2), 25-33. http://dx.doi.org/10.15446/ing.investig.v37n2.61447
- Luevanos-Rojas, A., Barquero-Cabrero, J.D., Lopez-Chavarria, S. and Medina-Elizondo, M. (2017b), "A comparative study for design of boundary combined footings of trapezoidal and rectangular forms using new models", Coupled Syst. Mech., Int. J., 6(4), 417-437. https://doi.org/10.12989/csm.2017.6.4.417
- Luevanos-Rojas, A., Lopez-Chavarria, S. and Medina-Elizondo, M. (2018), "A new model for T-shaped combined footings Part II: Mathematical model for design", Geomech. Eng., Int. J., 14(1), 61-69. https://doi.org/10.12989/gae.2018.14.1.061
- Maheshwari, P. and Khatri, S. (2012), "Influence of inclusion of geosynthetic layer on response of combined footings on stone column reinforced earth beds", Geomech. Eng., Int. J., 4(4), 263-279. https://doi.org/10.12989/gae.2012.4.4.263
- Malapur, M.M., Cholappanavar, P. and Fernandes, R.J. (2018), "Optimization of RC column and footings using genetic algorithm", Int. Res. J. Eng. Technol. (IRJET), 5(8), 546-552. https://www.irjet.net/archives/V5/i8/IRJET-V5I897.pdf
- Mohamed, F.M.O., Vanapalli, S.K. and Saatcioglu, M. (2013), "Generalized Schmertmann Equation for settlement estimation of shallow footings in saturated and unsaturated sands", Geomech. Eng., Int. J., 5(4), 363-377. https://doi.org/10.12989/gae.2013.5.4.343
- Mohebkhah, A. (2017), "Bearing capacity of stripfootingson a stone masonry trench in clay", Geomech. Eng., Int. J., 13(2), 255-267. https://doi.org/10.12989/gae.2017.13.2.255
- Orbanich, C.J. and Ortega, N.F. (2013), "Analysis of elastic foundation plates with internal and perimetric stiffening beams on elastic foundations by using Finite Differences Method", Struct. Eng. Mech., Int. J., 45(2), 169-182. https://doi.org/10.12989/sem.2013.45.2.169
- Orbanich, C.J., Dominguez, P.N. and Ortega, N.F. (2012), "Strenghtening and repair of concrete foundation beams whit fiber composite materials", Mater. Struct., 45(11), 1693-1704. https://doi.org/10.1617/s11527-012-9866-6
- Pasillas-Orona, A.I., Luevanos-Rojas, A., Lopez-Chavarria, S., Medina-Elizondo, M. and Aguilera-Mancilla, G. (2020), "Un modelo optimizado para zapatas combinadas trapezoidales apoyadas sobre el terreno: Superficie optima", Acta Universitaria, 30, e2973. http://doi.org/10.15174.au.2020.2973 https://doi.org/10.15174.au.2020.2973
- Rad, A.B. (2012), "Static response of 2-D functionally graded circular plate with gradient thickness and elastic foundations to compound loads", Struct. Eng. Mech., Int. J., 44(2), 139-161. https://doi.org/10.12989/sem.2012.44.2.139
- Rawat, S. and Mittal, R.K. (2018),"Optimization of Eccentrically Loaded Reinforced-Concrete Isolated Footings", Practice Period. Struct. Des. Constr., 23(2). https://doi.org/10.1061/(ASCE)SC.1943-5576.0000366
- Rizwan, M., Alam, B., Rehman, F.U., Masud, N., Shahzada, K., Masud, T. (2012), "Cost Optimization of Combined Footings Using Modified Complex Method of Box", Int. J. Adv. Struct. Geotech. Eng., 1(1), 24-28. https://www.academia.edu/20635751/Cost_Optimization_of_Combined_Footings_Using_Modified_Complex_Method_of_Box
- Shahin, M.A. and Cheung, E.M. (2011), "Stochastic design charts for bearing capacity of strip footings", Geomech. Eng., Int. J., 3(2), 153-167. https://doi.org/10.12989/gae.2011.3.2.153
- Smith-Pardo, J.P. (2011), "Performance-based framework for soilstructure systems using simplified rocking foundation models", Struct. Eng. Mech., Int. J., 40(6), 763-782. https://doi.org/10.12989/sem.2011.40.6.763
- Soltani, K., Bessaim, A., Houari, M.S.A., Kaci, A., Benguediab, M., Tounsi, A. and Alhodaly, M.S. (2019), "A novel hyperbolic shear deformation theory for the mechanical buckling analysis of advanced composite plates resting on elastic foundations", Steel Compos. Struct., Int. J., 30(1), 13-29. https://doi.org/10.12989/scs.2019.30.1.013
- Turedi, Y., Emirler, B., Ornek, M. and Yildiz, A. (2019), "Determination of the bearing capacity of model ring footings: Experimental and numerical investigations", Geomech. Eng., Int. J., 18(1), 29-39. https://doi.org/10.12989/gae.2019.18.1.029
- Uncuoglu, E. (2015), "The bearing capacity of square footings on a sand layer overlying clay", Geomech. Eng., Int. J., 9(3), 287-311. https://doi.org/10.12989/gae.2015.9.3.287
- Velazquez-Santillan, F., Luevanos-Rojas, A., Lopez-Chavarria, S., Medina-Elizondo, M. and Sandoval-Rivas, R. (2018), "Numerical experimentation for the optimal design for reinforced concrete rectangular combined footings", Adv. Comput. Des., Int. J., 3(1), 49-69. https://doi.org/10.12989/acd.2018.3.1.049
- Wang, Y. (2009), "Reliability-based economic design optimization of spread foundations", J. Geotech. Geoenviron., 135(7), 954-959. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000013
- Wang, Y. and Kulhawy, F.H. (2008), "Economic Design Optimization of Foundation", J. Geotech. Geoenviron., 134(8), 1097-1105. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:8(1097)
- Yanez-Palafox, J.A., Luevanos-Rojas, A., Lopez-Chavarria, S. and Medina-Elizondo, M. (2019), "Modeling for the strap combined footings Part II: Mathematical model for design", Steel Compos. Struct., Int. J., 30(2), 109-121. https://doi.org/10.12989/scs.2019.30.2.109
- Yeh, J.-P. and Huang, K.-H. (2016), "Application of Genetic Algorithms Coupled with Neural Networks to Optimization of Reinforced Concrete Footings", Transact. Mach. Learn. Artif. Intell., 4(4), 18-35. https://journals.scholarpublishing.org/index.php/TMLAI/article/view/2150
- Yeh, J.-P. and Huang, K.-H. (2017), "Effects of Strengths of Steel and Concrete, Eccentricity and Bar Size on the Optimization of Eccentrically Loaded Footings", Transact. Mach. Learn. Artif. Intell., 5(5), 87-97. https://journals.scholarpublishing.org/index.php/TMLAI/issue/view/169/218
- Zhang, L., Zhao, M.H., Xiao, Y. and Ma, B.H. (2011), "Nonlinear analysis of finite beam resting on Winkler with consideration of beam-soil interface resistance effect", Struct. Eng. Mech., Int. J., 38(5), 573-592. https://doi.org/10.12989/sem.2011.38.5.573