Acknowledgement
In this study, Scientific Research Projects Committee of Inonu University provided the financial support in Turkiye (Project No: FYL-2017-844). Their support was gratefully acknowledged.
References
- Ali, M.H., Dinkha, Y.Z. and Haido, J.H. (2017), "Mechanical properties and spalling at elevated temperature of high performance concrete made with reactive and waste inert powders", Eng. Sci. Technol., Int. J., 20(2), 536-541. https://doi.org/10.1016/j.jestch.2016.12.004
- Aslani, F., Hamidi, F., Valizadeh, A. and Dang, A.T.N. (2020), "High-performance fibre-reinforced heavyweight self-compacting concrete: Analysis of fresh and mechanical properties", Constr. Build. Mater., 232. https://doi.org/10.1016/j.conbuildmat.2019.117230
- ASTM (2019), ASTM C618-19: Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete, ASTM Standards.
- ASTM C39 / C39M-20 (2020), Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens.
- ASTM C496 / C496M-17 (2017), Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens.
- ASTM C78 / C78M-18 (2018), Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading).
- ASTM International (2009), C597-09. Standard Test Method for Pulse Velocity Through Concrete, Annual Book of ASTM Standards.
- Bassurucu, M., Fenerli, C., Kina, C. and Akbas, S. (2022), "Effect of fiber type, shape and volume fraction on mechanical and flexural properties of concrete", J. Sustain. Constr. Mater. Technol., 7(3), 158-171. https://doi.org/10.47481/jscmt.1137088
- Behfarnia, K. and Rostami, M. (2017), "Mechanical properties and durability of fiber reinforced alkali activated slag concrete", J. Mater. Civil Eng., 29(12), 04017231. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002073
- Bhat, P.S., Chang, V. and Li, M. (2014), "Effect of elevated temperature on strain-hardening engineered cementitious composites", Constr. Build. Mater., 69, 370-380. https://doi.org/10.1016/j.conbuildmat.2014.07.052
- Chan, Y.N., Peng, G.F. and Anson, M. (1999), "Residual strength and pore structure of high-strength concrete and normal strength concrete after exposure to high temperatures", Cement Concrete Compos., 21(1), 23-27. https://doi.org/10.1016/S0958-9465(98)00034-1
- Deshpande, A.A., Kumar, D. and Ranade, R. (2019), "Influence of high temperatures on the residual mechanical properties of a hybrid fiber-reinforced strain-hardening cementitious composite", Constr. Build. Mater., 208, 283-295. https://doi.org/10.1016/j.conbuildmat.2019.02.129
- Ding, Y., Liu, S., Zhang, Y. and Thomas, A. (2008), "The investigation on the workability of fibre cocktail reinforced self-compacting high performance concrete", Constr. Build. Mater., 22(7), 1462-1470. https://doi.org/10.1016/j.conbuildmat.2007.03.034
- Ding, Y., Wang, Y., Zhang, Y. and Paulini, P. (2009), "Investigation of the stress and strain state of clay pipes under fire condition", Ceramics Int., 35(1), 63-67. https://doi.org/10.1016/j.ceramint.2007.09.112
- Ding, Y., You, Z. and Jalali, S. (2010), "Hybrid fiber influence on strength and toughness of RC beams", Compos. Struct., 92(9), 2083-2089. https://doi.org/10.1016/j.compstruct.2009.10.016
- Ding, Y., Azevedo, C., Aguiar, J.B. and Jalali, S. (2012), "Study on residual behaviour and flexural toughness of fibre cocktail reinforced self compacting high performance concrete after exposure to high temperature", Constr. Build. Mater., 26(1), 21-31. https://doi.org/10.1016/j.conbuildmat.2011.04.058
- EFNARC (2002), Specification and Guidelines for Self-Compacting Concrete. Report from EFNARC.
- Eidan, J., Rasoolan, I., Rezaeian, A. and Poorveis, D. (2019), "Residual mechanical properties of polypropylene fiber-reinforced concrete after heating", Constr. Build. Mater., 198, 195-206. https://doi.org/10.1016/j.conbuildmat.2018.11.209
- Gao, D., Yan, D. and Li, X. (2012), "Splitting strength of GGBFS concrete incorporating with steel fiber and polypropylene fiber after exposure to elevated temperatures", Fire Safety J., 67-73. https://doi.org/10.1016/j.firesaf.2012.07.009
- Guo, Z., Zhuang, C., Li, Z. and Chen, Y. (2021), "Mechanical properties of carbon fiber reinforced concrete (CFRC) after exposure to high temperatures", Compos. Struct., 256. https://doi.org/10.1016/j.compstruct.2020.113072
- Haddadou, N., Chaid, R., Ghernouti, Y. and Adjou, N. (2014), "The effect of hybrid steel fiber on the properties of fresh and hardened self-compacting concrete", J. Build. Mater. Struct., 1, 65-76. https://doi.org/10.34118/jbms.v1i2.10
- Haido, J.H., Tayeh, B.A., Majeed, S.S. and Karpuzcu, M. (2020), "Effect of high temperature on the mechanical properties of basalt fibre self-compacting concrete as an overlay material", Constr. Build. Mater., 268, 121725. https://doi.org/10.1016/j.conbuildmat.2020.121725
- Hassiba, B., Mekki, M. and Fraid, R. (2018), "The relationship between the compressive strength and ultrasonic pulse velocity concrete with fibers exposed to high temperatures", Int. J. of Energet., 3(1), 31.
- Heinz, D., Dehn, F. and Urbonas, L. (2004), "Fire Resistance of Ultra High Performance Concrete (UHPC) - Testing of Laboratory Samples and Columns under Load", In: International Symposium on Ultra High Performance Concrete.
- Le Hoang, A. and Fehling, E. (2017), "Influence of steel fiber content and aspect ratio on the uniaxial tensile and compressive behavior of ultra high performance concrete", Constr. Build. Mater., 153, 790-806. https://doi.org/10.1016/j.conbuildmat.2017.07.130
- Janotka, I. and Mojumdar, S.C. (2005), "Thermal analysis at the evaluation of concrete damage by high temperatures", J. Thermal Anal. Calorim., 81(1), 197-203. https://doi.org/10.1007/s10973-005-0767-6
- Khaliq, W. and Kodur, V. (2011), "Thermal and mechanical properties of fiber reinforced high-performance self-consolidating concrete at elevated temperatures", Cement Concrete Res., 41(11), 1112-1122. https://doi.org/10.1016/j.cemconres.2011.06.012
- Khan, M., Cao, M., Chaopeng, X. and Ali, M. (2021), "Experimental and analytical study of hybrid fiber reinforced concrete prepared with basalt fiber under high temperature", Fire and Materials, 46(1), 205-226. https://doi.org/10.1002/fam.2968
- Khotbehsara, M.M., Miyandehi, B.M., Naseri, F., Ozbakkaloglu, T., Jafari, F. and Mohseni, E. (2018), "Effect of SnO2, ZrO2, and CaCO3 nanoparticles on water transport and durability properties of self-compacting mortar containing fly ash: Experimental observations and ANFIS predictions", Constr. Build. Mater., 158, 823-834. https://doi.org/10.1016/j.conbuildmat.2017.10.067
- Kodur, V.K.R. (2004), "Spalling in high strength concrete exposed to fire - Concerns, causes, critical parameters and cures", In: Structures Congress 2000: Advanced Technology in Structural Engineering.
- Kodur, V. (2014), "Properties of concrete at elevated temperatures", In: ISRN Civil Engineering.
- Koushkbaghi, M., Kazemi, M.J., Mosavi, H. and Mohseni, E. (2019), "Acid resistance and durability properties of steel fiber-reinforced concrete incorporating rice husk ash and recycled aggregate", Constr. Build. Mater., 202, 266-275. https://doi.org/10.1016/j.conbuildmat.2018.12.224
- Kurtz, S. and Balaguru, P. (2000), "Postcrack creep of polymeric fiber-reinforced concrete in flexure", Cement Concrete Res., 30(2), 183-190. https://doi.org/10.1016/S0008-8846(99)00228-8
- Li, V.C., Wang, S. and Wu, C. (2001), "Tensile strain-hardening behavior or polyvinyl alcohol engineered cementitious composite (PVA-ECC)", ACI Mater. J., 98(6), 483-492. https://doi.org/10.14359/10851
- Li, H., Wang, Y., Xie, H. and Zheng, W. (2012), "Microstructure analysis of reactive powder concrete after exposed to high temperature", Huazhong Keji Daxue Xuebao (Ziran Kexue Ban)/Journal of Huazhong University of Science and Technology (Natural Science Edition), 40(5), 71-75.
- Li, X., Bao, Y., Wu, L., Yan, Q., Ma, H., Chen, G. and Zhang, H. (2017), "Thermal and mechanical properties of high-performance fiber-reinforced cementitious composites after exposure to high temperatures", Constr. Build. Mater., 157, 829-838. https://doi.org/10.1016/j.conbuildmat.2017.09.125
- Liang, X., Wu, C., Su, Y., Chen, Z. and Li, Z. (2018), "Development of ultra-high performance concrete with high fire resistance", Constr. Build. Mater., 179, 400-412. https://doi.org/10.1016/j.conbuildmat.2018.05.241
- Liu, Y., Zhang, Z., Shi, C., Zhu, D., Li, N. and Deng, Y. (2020), "Development of ultra-high performance geopolymer concrete (UHPGC): Influence of steel fiber on mechanical properties", Cement Concrete Compos., 112. https://doi.org/10.1016/j.cemconcomp.2020.103670
- Luo, X., Sun, W. and Chan, S.Y.N. (2000), "Effect of heating and cooling regimes on residual strength and microstructure of normal strength and high-performance concrete", Cement Concrete Res., 30(3), 379-383. https://doi.org/10.1016/S0008-8846(99)00264-1
- Mahapatra, C.K. and Barai, S.V. (2019), "Temperature impact on residual properties of self-compacting based hybrid fiber reinforced concrete with fly ash and colloidal nano silica", Constr. Build. Mater., 198, 120-132. https://doi.org/10.1016/j.conbuildmat.2018.11.155
- Majeed, S.S., Haido, J.H., Atrushi, D.S., Al-Kamaki, Y., Dinkha, Y.Z., Saadullah, S.T. and Tayeh, B.A. (2021), "Properties of self-compacted concrete incorporating basalt fibers: Experimental study and Gene Expression Programming (GEP) analysis", Comput. Concrete, Int. J., 28(5), 451-463. https://doi.org/10.12989/cac.2021.28.5.451
- Mohamedbhai, G.T.G. (1986), "Effect of exposure time and rates of heating and cooling on residual strength of heated concrete", Magaz. Concrete Res., 38(136), 151-158. https://doi.org/10.1680/macr.1986.38.136.151
- Moradllo, M.K., Qiao, C., Isgor, B., Reese, S. and Weiss, W.J. (2018), "Relating formation factor of concrete to water absorption", ACI Mater. J., 115(6), 887-898. https://doi.org/10.14359/51706844
- Netinger, I., Varevac, D., Bjegovic, D. and Moric, D. (2013), "Effect of high temperature on properties of steel slag aggregate concrete", Fire Safety J., 59, 1-7. https://doi.org/10.1016/j.firesaf.2013.03.008
- Park, J.J., Yoo, D.Y., Kim, S. and Kim, S.W. (2019), "Benefits of synthetic fibers on the residual mechanical performance of UHPFRC after exposure to ISO standard fire", Cement Concrete Compos., 104. https://doi.org/10.1016/j.cemconcomp.2019.103401
- Peng, G.F., Bian, S.H., Guo, Z.Q., Zhao, J., Peng, X.L. and Jiang, Y.C. (2008), "Effect of thermal shock due to rapid cooling on residual mechanical properties of fiber concrete exposed to high temperatures", Constr. Build. Mater., 22(5), 948-955. https://doi.org/10.1016/j.conbuildmat.2006.12.002
- Pliya, P., Beaucour, A.L. and Noumowe, A. (2011), "Contribution of cocktail of polypropylene and steel fibres in improving the behaviour of high strength concrete subjected to high temperature", Constr. Build. Mater., 25(4), 1926-1934. https://doi.org/10.1016/j.conbuildmat.2010.11.064
- Rashad, A.M., Bai, Y., Basheer, P.A.M., Collier, N.C. and Milestone, N.B. (2012), "Chemical and mechanical stability of sodium sulfate activated slag after exposure to elevated temperature", Cement Concrete Res., 42(2), 333-343. https://doi.org/10.1016/j.cemconres.2011.10.007
- Ruano, G., Isla, F., Luccioni, B., Zerbino, R. and Giaccio, G. (2018), "Steel fibers pull-out after exposure to high temperatures and its contribution to the residual mechanical behavior of high strength concrete", Constr. Build. Mater., 163, 571-585. https://doi.org/10.1016/j.conbuildmat.2017.12.129
- Sadrmomtazi, A. and Tahmouresi, B. (2017), "Effect of fiber on mechanical properties and toughness of self-compacting concrete exposed to high temperatures", AUT J. Civil Eng., 1(2), 153-166.
- Sadrmomtazi, A., Tahmouresi, B. and Saradar, A. (2018), "Effects of silica fume on mechanical strength and microstructure of basalt fiber reinforced cementitious composites (BFRCC)", Constr. Build. Mater., 162, 321-333. https://doi.org/10.1016/j.conbuildmat.2017.11.159
- Sadrmomtazi, A., Gashti, S.H. and Tahmouresi, B. (2020), "Residual strength and microstructure of fiber reinforced self-compacting concrete exposed to high temperatures", Constr. Build. Mater., 230. https://doi.org/10.1016/j.conbuildmat.2019.116969
- Sahmaran, M., Lachemi, M. and Li, V.C. (2010), "Assessing mechanical properties and microstructure of fire-damaged engineered cementitious composites", ACI Mater. J., 107(3), 297-304.
- Satoh, K., Yamaguchi, M. and Ogura, I. (1979), "Thermal decomposition products of guaiazulene", Yakugaku Zasshi, 99(9), 958-960. https://doi.org/10.1248/yakushi1947.99.9_958
- Shafiei Dastgerdi, A., Peterman, R.J., Riding, K. and Beck, B.T. (2019), "Effect of concrete mixture components, proportioning, and compressive strength on fracture parameters", Constr. Build. Mater., 206, 179-192. https://doi.org/10.1016/j.conbuildmat.2019.02.025
- Sun, Z. and Xu, Q. (2009), "Microscopic, physical and mechanical analysis of polypropylene fiber reinforced concrete", Mater. Sci. Eng. A, 527(1-2), 198-204. https://doi.org/10.1016/j.msea.2009.07.056
- Topcu, I.B. and Karakurt, C. (2008), "Properties of reinforced concrete steel rebars exposed to high temperatures", Adv. Mater. Sci. Eng., 2008. https://doi.org/10.1155/2008/814137
- Tsuchiya, Y. and Sumi, K. (1969), "Thermal decomposition products of polypropylene", J. Polym. Sci. Part A-1: Polym. Chem., 7(7), 1599-1607. https://doi.org/10.1002/pol.1969.150070704
- Turgut, P., Turk, K. and Bakirci, H. (2012), "Segregation control of SCC with a modified L-box apparatus", Magaz. Concrete Res., 64(8), 707-716. https://doi.org/10.1680/macr.11.00144
- Turk, K. (2012), "Viscosity and hardened properties of self-compacting mortars with binary and ternary cementitious blends of fly ash and silica fume", Constr. Build. Mater., 37, 326-334. https://doi.org/10.1016/j.conbuildmat.2012.07.081
- Turk, K. and Karatas, M. (2011), "Abrasion resistance and mechanical properties of self-compacting concrete with different dosages of fly ash/silica fume", Indian J. Eng. Mater. Sci., 18(1), 49-60.
- Turk, K., Kina, C. and Oztekin, E. (2020), "Effect of macro and micro fiber volume on the flexural performance of hybrid fiber reinforced SCC", Adv. Concrete Constr., Int. J., 10(3), 257-269. https://doi.org/10.12989/acc.2020.10.3.257
- Turk, K., Bassurucu, M. and Bitkin, R.E. (2021), "Workability, strength and flexural toughness properties of hybrid steel fiber reinforced SCC with high-volume fiber", Constr. Build. Mater., 266. https://doi.org/10.1016/j.conbuildmat.2020.120944
- Turk, K., Oztekin, E. and Kina, C. (2022), "Self-compacting concrete with blended short and long fibres: experimental investigation on the role of fibre blend proportion", Eur. J. Environ. Civil Eng., 26(3), 905-918. https://doi.org/10.1080/19648189.2019.1686069
- Varona, F.B., Baeza, F.J., Bru, D. and Ivorra, S. (2018), "Influence of high temperature on the mechanical properties of hybrid fibre reinforced normal and high strength concrete", Constr. Build. Mater., 159, 73-82. https://doi.org/10.1016/j.conbuildmat.2017.10.129
- Wang, G., Zhang, C., Zhang, B., Li, Q. and Shui, Z. (2015), "Study on the high-temperature behavior and rehydration characteristics of hardened cement paste", Fire Mater., 39(8), 741-750. https://doi.org/10.1002/fam.2269
- Xargay, H., Folino, P., Sambataro, L. and Etse, G. (2018), "Temperature effects on failure behavior of self-compacting high strength plain and fiber reinforced concrete", Constr. Build. Mater., 165, 723-734. https://doi.org/10.1016/j.conbuildmat.2017.12.137
- Xiao, J. and Falkner, H. (2006), "On residual strength of high-performance concrete with and without polypropylene fibres at elevated temperatures", Fire Safety J., 41(2), 115-121. https://doi.org/10.1016/j.firesaf.2005.11.004
- Xie, T. and Visintin, P. (2018), "A unified approach for mix design of concrete containing supplementary cementitious materials based on reactivity moduli", J. Cleaner Prod., 203, 68-82. https://doi.org/10.1016/j.jclepro.2018.08.254
- Xie, T., Fang, C., Mohamad Ali, M.S. and Visintin, P. (2018), "Characterizations of autogenous and drying shrinkage of ultra-high performance concrete (UHPC): An experimental study", Cement Concrete Compos., 91, 156-173. https://doi.org/10.1016/j.cemconcomp.2018.05.009
- Xu, Y., Wong, Y.L., Poon, C.S. and Anson, M. (2001), "Impact of high temperature on PFA concrete", Cement Concrete Res., 31(7), 1065-1073. https://doi.org/10.1016/S0008-8846(01)00513-0
- Xu, B., Toutanji, H.A., Lavin, T. and Gilbert, J.A. (2011), "Characterization of poly(vinyl alcohol) fiber reinforced organic aggregate cementitious materials", In: Key Engineering Materials, Vol. 466, pp. 73-83. https://doi.org/10.4028/www.scientific.net/KEM.466.73
- Yang, H., Lin, Y., Hsiao, C. and Liu, J.Y. (2009), "Evaluating residual compressive strength of concrete at elevated temperatures using ultrasonic pulse velocity", Fire Safety J., 44(1), 121-130. https://doi.org/10.1016/j.firesaf.2008.05.003
- Yuksel, S., Siddique, R. and Ozkan, O. (2011), "Influence of high temperature on the properties of concretes made with industrial by-products as fine aggregate replacement", Constr. Build. Mater., 25(2), 967-972. https://doi.org/10.1016/j.conbuildmat.2010.06.085
- Yun, H.D., Yang, I.S., Kim, S.W., Jeon, E., Choi, C.S. and Fukuyama, H. (2007), "Mechanical properties of high-performance hybrid-fibre-reinforced cementitious composites (HPHFRCCs)", Magaz. Concrete Res., 59(4), 257-271. https://doi.org/10.1680/macr.2007.59.4.257
- Zhang, Q., Ye, G. and Koenders, E. (2013), "Investigation of the structure of heated Portland cement paste by using various techniques", Constr. Build. Mater., 38, 1040-1050. https://doi.org/10.1016/j.conbuildmat.2012.09.071
- Zheng, W., Li, H. and Wang, Y. (2012), "Compressive stress-strain relationship of steel fiber-reinforced reactive powder concrete after exposure to elevated temperatures", Constr. Build. Mater., 35, 931-940. https://doi.org/10.1016/j.conbuildmat.2012.05.031
- Zhou, X. and Li, Z. (2005), "Characterization of rheology of fresh fiber reinforced cementitious composites through ram extrusion", Mater. Struct., 38(1), 17-24. https://doi.org/10.1007/BF02480570