DOI QR코드

DOI QR Code

Effects of Carbon Dioxide Concentration on Functional Response of Aphidius colemani Viereck (Hymenoptera: Braconidae) on the Green Peach Aphid

복숭아혹진딧물에 대한 콜레마니진디벌 기능반응에 미치는 이산화탄소 농도 영향

  • Jeong Joon Ahn (Research Institute of Climate Change and Agriculture, National Institute of Horticultural & Herbal Science) ;
  • Jung-Eun Kim (Research Institute of Climate Change and Agriculture, National Institute of Horticultural & Herbal Science) ;
  • Chun Hwan Kim (Research Institute of Climate Change and Agriculture, National Institute of Horticultural & Herbal Science)
  • 안정준 (국립원예특작과학원 온난화대응농업연구소) ;
  • 김정은 (국립원예특작과학원 온난화대응농업연구소) ;
  • 김천환 (국립원예특작과학원 온난화대응농업연구소)
  • Received : 2023.05.30
  • Accepted : 2023.08.04
  • Published : 2023.09.01

Abstract

In this study, we investigated the functional response of aphid parasitoid, Aphidius colemani Viereck (Hymenoptera: Braconidae), on the green peach aphid, Myzus persicae (Sulzer) (Hemiptera: Aphididae). Three carbon dioxide concentrations (400, 600, and 1000ppm) and seven host densities (2, 4, 8, 16, 32, 64, and 128) were used during a 24-h period. A type III functional response for A. colemani was fit separately for each CO2 concentration. The estimated handling time (Th) under elevated CO2 (600 ppm and 1000 ppm, 0.015 and 0.014 day) was shorter than that under ambient CO2 (400 ppm, 0.017 day). The proportion of aphids that were parasitized showed the similar characteristic curve under three CO2 concentrations. The highest parasitized rates for A. colemani were 0.57, 0.61, and 0.70 at 16, 32, and 32 aphid density under 400, 600, and 1000ppm, respectively. Although handling time of A. colemani was influenced by elevated CO2 concentrations, the attach rate was not changed much.

본 연구에서는 복숭아혹진딧물의 포식 기생자인 콜레마니진디벌의 기능반응을 조사하였다. 이산화탄소 농도별(400, 600, 1000ppm) 복숭아혹진딧물 밀도를 달리하여(2, 4, 8, 16, 32, 64, 128마리) 콜레마니진디벌 한 마리를 24시간 동안 노출시켰다. 각 이산화탄소 처리에서 콜레마니진디벌은 제 3 유형의 기능반응을 보였다. 600 ppm (0.015 day)과 1000 ppm (0.014 day)에서 추정된 처리시간은 400 ppm에서 추정된 결과(0.017 day)보다 짧았다. 이산화탄소 농도별 복숭아혹진딧물 기생률은 유사한 특징을 나타내었다. 가장 높은 기생률은 400, 600, 1000 ppm에서 복숭아혹진딧물 16, 32, 32마리에 대해 0.57, 0.61, 0.70이었다. 이산화탄소 농도 증가는 콜레마니진디벌의 기능반응에서 공격율에는 영향을 주지 않았지만 처리시간에는 영향을 주었다.

Keywords

Acknowledgement

본 연구는 농촌진흥청 시험연구과제인 '기온 및 이산화탄소 변화에 따른 복숭아혹진딧물과 기생벌 상호작용 영향평가(과제번호: PJ01606002)'로 수행되었습니다.

References

  1. Ahn, J.J., Choi, K.S., 2023. Population parameters and growth of Myzus persicae Sulzer (Hemiptera: Aphididae) under elevated CO2 concentrations in the air. Entomol. Res. 53, 175-189. https://doi.org/10.1111/1748-5967.12642
  2. Ahn, J.J., Choi, K.S., Koh, S., 2021. Population parameters and growth of Riptortus pedestris (Fabricius) (Hemiptera: Alydidae) under elevated CO2 concentrations. Entomol. Res. 51, 12-23. https://doi.org/10.1111/1748-5967.12479
  3. Akbar, S.M., Pavani, T., Nagaraja, T., Sharma, H.C., 2016. Influence of CO2 and temperature on metabolism and development of Helicoverpa armigera (Noctuidae: Lepidoptera). Environ. Entomol. 45, 229-236. https://doi.org/10.1093/ee/nvv144
  4. Becker, C., Herrmann, K., Reineke, A., 2023. Biological control in a changing climate: Plant-mediated impact of elevated CO2 concentration on Lobesia botrana eggs and egg parasitism by Trichogramma cacoeciae. J. Pest Sci. 96, 683-693. https://doi.org/10.1007/s10340-022-01545-w
  5. Benelli, G., Messing, R.H., Wright, M.G., Giunti, G., Kavallieratos, N.G., Canale, A., 2014. Cues triggering mating and host-seeking behavior in the aphid parasitoid Aphidius colemani (Hymenoptera: Braconidae: Aphidiinae): implications for biological control. J. Econ. Entomol. 107, 2005-2022. https://doi.org/10.1603/EC14291
  6. Benzemer, T.M., Jones, T.H., 1998. Plant-insect herbivore interactions in elevated atmospheric CO2: Quantitative analyses and guild effects. Oikos 82, 212-222. https://doi.org/10.2307/3546961
  7. Berryman, A.A., 1992. The origins and evolution of predator-prey theory. Ecology 73, 1530-1535. https://doi.org/10.2307/1940005
  8. Bilu, E., Hopper, K.R., Coll, M., 2006. Host choice by Aphidius colemani: Effects of plants, plant-aphid combinations and the presence of intra-guild predators. Ecol. Entomol. 31, 331-336. https://doi.org/10.1111/j.1365-2311.2006.00786.x
  9. Blackman, R.L., Eastop, V.F., 2007. Taxonomic issues, in: van Emden, H.F., Harrington, R. (Eds.), Aphids as crop pests. Oxford University Press, London, pp. 1-29.
  10. Byeon, Y.W., Tuda, M., Kim, J.H., Choi, M.Y., 2011. Functional response of aphid parasitoids, Aphidius colemani (Hymenoptera: Braconidae) and Aphelinus asychis (Hymenoptera: Aphelinidae). Biocontrol Sci. Techn. 21, 57-70. https://doi.org/10.1080/09583157.2010.521236
  11. Canadell, J.G., Le Quere, C., Raupach, M.R., Field, C.B., Buitenhuis, E.T., Ciais, P., Conway, T.J., Gillett, N.P., Houghton, R.A., Marland, G., 2007. Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. PNAS 104, 18866-18870. https://doi.org/10.1073/pnas.0702737104
  12. Cannon, R.J.C., 1998. The implications of predicted climate change for insect pests in the UK, with emphasis on non-indigenous species. Global Change Biol. 4, 785-796. https://doi.org/10.1046/j.1365-2486.1998.00190.x
  13. Choi, K.S., Ahn, S-J., Kim, S.B., Ahn, J.J., Jung, B.N., Go, S.W., Kim, D-S., 2018. Elevated CO2 may alter pheromonal communication in Helicoverpa armigera (Lepidoptera: Noctuidae). Physiol. Entomol. 43, 169-179. https://doi.org/10.1111/phen.12239
  14. Das, D.K., Singh, J., Vennila, S., 2011. Emerging crop pest scenario under the impact of climate change - a brief review. J. Agr. Physics 11, 13-20.
  15. Dixon, A.F.G., 1998. Aphid ecology. Chapman and Hall, London.
  16. Fernandez-arhex, V., Corley, J.C., 2003. The functional response of parasitoids and its implications for biological control. Biocontrol. Sci. Technol. 13, 403-413. https://doi.org/10.1080/0958315031000104523
  17. Halsch, C.A., Shapiro, A.M., Fordyce, J.A., Nice, C.C., Thorne, J.H., Waetjen, D.P., Forister, M.L., 2021. Insects and recent climate change. PNAS 118, e2002543117.
  18. Hassell, M.P., 1978. The dynamics of arthropod predator-prey systems. Princeton University Press, Princeton, NJ.
  19. Hassell, M.P., 1982. Patterns of parasitism by insect parasitoids in patchy environments. Ecol. Entomol. 7, 365-377. https://doi.org/10.1111/j.1365-2311.1982.tb00678.x
  20. Heinz, K.M., 1998. Dispersal and dispersion of aphids (Homoptera: Aphididae) and selected natural enemies in spatially subdivided greenhouse environments. Environ. Entomol. 27, 1029-1038. https://doi.org/10.1093/ee/27.4.1029
  21. Holling, C.S., 1959. The components of predation as revealed by a study of small mammal predation of the European pine sawfly. Can. Entomol. 91, 293-320. https://doi.org/10.4039/Ent91293-5
  22. Houck, M.A., Strauss, R.E., 1985. The comparative study of functional responses: Experimental design and statistical interpretation. Can. Entomol. 117, 617-629. https://doi.org/10.4039/Ent117617-5
  23. IPCC, 2013. Annex II: Climate system scenario tables. in: Stocker, T.F., Qin, D., Plattner, G-K., Tignor, M.M.B., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M. (Eds.), Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental panel on climate change. Cambridge University Press, London, pp. 1395-1445.
  24. Jandel Scientific, 1994. TableCurve user's manual. San Rafael, CA.
  25. Juliano, S.A., 2001. Nonlinear curve fitting: Predation and functional response curves, in: Scheiner, S.M., Gurevitch, J. (Eds.), Design and analysis of ecological experiments. Oxford University Press, New York, pp 178-196.
  26. Kalinkat, G., Rall, B.C., Uiterwaal, S.F., Uszko, W., 2023. Empirical evidence of type III functional responses and why it remains rare. Front. Ecol. Evol. 11, 1033818.
  27. Khan, M.A.Z., Liang, Q., Maria, M.S.M., Liu, T-X., 2016. Effect of temperature on functional response of Aphidius gifuensis (Hymenoptera: Braconidae) parasitizing Myzus persicae (Hemiptera: Aphididae). Fla. Entomol. 99, 696-702. https://doi.org/10.1653/024.099.0419
  28. Liu, J., Huang, W., Chi, H., Wang, C., Hua, H., Wu, G., 2017. Effects of elevated CO2 on the fitness and potential population damage of Helicoverpa armigera based on two-sex life table. Sci. Rep. 7, 1119.
  29. Messing, R., Rabasse, J.M., 1995. Oviposition behavior of the polyphagous aphid parasitoid Aphidius colemani Viereck (Hymenoptera: Aphidiidae). Agric. Ecosyst. Environ. 52, 13-17. https://doi.org/10.1016/0167-8809(94)09002-O
  30. Moreno-Delafuente, A., Fereres, A., Vinuela, E., Medina, P., 2021. Elevated carbon dioxide reduces Aphis gossypii intrinsic increase rates without affecting Aphidius colemani parasitism rate. Biol. Control 163,104741.
  31. Prado, S.G., Jandricic, S.E., Frank, S.D., 2015. Ecological interactions affecting the efficacy of Aphidius colemani in greenhouse crops. Insects 6, 538-575. https://doi.org/10.3390/insects6020538
  32. Sangle, P.M., Satpute, S.B., Khan, F.S., Rode, N.S., 2015. Impact of climate change on insects. Trends in Biosci. 8, 3579-3582.
  33. SAS Institute, 2002. SAS user's guide: Statistics, version 9.4. SAS Institute, Cary, NC.
  34. Schenk, D., Bacher, S., 2002. Functional response of a generalist insect predator to one of its prey species in the field. J. Anim. Ecol. 71, 524-531. https://doi.org/10.1046/j.1365-2656.2002.00620.x
  35. Schulze-Sylvester, M., Reineke, A., 2019. Elevated CO2 levels impact fitness traits of vine mealybug Planococcus ficus Signoret, but not its parasitoid Leptomastix dactylopii Howard. Agronomy, 9, 326.
  36. Solomon, S., Plattner, G-K., Knutti, R., Friedlingstein, P., 2009. Irreversible climate change due to carbon dioxide emissions. PNAS 106, 1704-1709. https://doi.org/10.1073/pnas.0812721106
  37. Stiling, P., Cornelissen, T., 2007. How does elevated carbon dioxide (CO2) affect plant-herbivore interactions? A field experiment and meta-analysis of CO2-mediated changes on plant chemistry and herbivore performance. Global Change Biol. 13, 1823-1842. https://doi.org/10.1111/j.1365-2486.2007.01392.x
  38. Vasquez, G.M., Orr, D.B., Baker, J.R., 2006. Efficacy assessment of Aphidius colemani (Hymenoptera: Braconidae) for suppression of Aphis gossypii (Homoptera: Aphididae) in greenhouse-grown chrysanthemum. J. Econ. Entomol. 99, 1104-1111. https://doi.org/10.1093/jee/99.4.1104
  39. Wagner, D.L., Grames, E.M., Forister, M.L., Stopak, D., 2021. Insect decline in the Anthropocene: Death by a thousand cuts. PNAS 118, e2023989118.
  40. Xie, H., Zhao, L, Yang, Q., Wang, Z., He, K., 2015. Direct effects of elevated CO2 levels on the fitness performance of Asian corn borer (Lepidoptera: Crambidae) for multigenerations. Environ. Entomol. 44, 1250-1257. https://doi.org/10.1093/ee/nvv102
  41. Yan, H.-Y., Guo, H.-G., Sun, Y.-C., Ge, F., 2020. Plant phenolics mediated bottom-up effects of elevated CO2 on Acyrthosiphon pisum and its parasitoid Aphidius avenae. Insect Sci. 27, 170-184. https://doi.org/10.1111/1744-7917.12627
  42. Zamani, A., Talebi A., Fathipour, Y., Baniameri, V., 2006. Temperature-dependent functional response of two aphid parasitoids, Aphidius colemani and Aphidius matricariae (Hymenoptera: Aphididae), on the cotton aphid. J. Pest Sci. 79, 183-188. https://doi.org/10.1007/s10340-006-0132-y