Acknowledgement
본 연구는 농촌진흥청 시험연구과제인 '기온 및 이산화탄소 변화에 따른 복숭아혹진딧물과 기생벌 상호작용 영향평가(과제번호: PJ01606002)'로 수행되었습니다.
References
- Ahn, J.J., Choi, K.S., 2023. Population parameters and growth of Myzus persicae Sulzer (Hemiptera: Aphididae) under elevated CO2 concentrations in the air. Entomol. Res. 53, 175-189. https://doi.org/10.1111/1748-5967.12642
- Ahn, J.J., Choi, K.S., Koh, S., 2021. Population parameters and growth of Riptortus pedestris (Fabricius) (Hemiptera: Alydidae) under elevated CO2 concentrations. Entomol. Res. 51, 12-23. https://doi.org/10.1111/1748-5967.12479
- Akbar, S.M., Pavani, T., Nagaraja, T., Sharma, H.C., 2016. Influence of CO2 and temperature on metabolism and development of Helicoverpa armigera (Noctuidae: Lepidoptera). Environ. Entomol. 45, 229-236. https://doi.org/10.1093/ee/nvv144
- Becker, C., Herrmann, K., Reineke, A., 2023. Biological control in a changing climate: Plant-mediated impact of elevated CO2 concentration on Lobesia botrana eggs and egg parasitism by Trichogramma cacoeciae. J. Pest Sci. 96, 683-693. https://doi.org/10.1007/s10340-022-01545-w
- Benelli, G., Messing, R.H., Wright, M.G., Giunti, G., Kavallieratos, N.G., Canale, A., 2014. Cues triggering mating and host-seeking behavior in the aphid parasitoid Aphidius colemani (Hymenoptera: Braconidae: Aphidiinae): implications for biological control. J. Econ. Entomol. 107, 2005-2022. https://doi.org/10.1603/EC14291
- Benzemer, T.M., Jones, T.H., 1998. Plant-insect herbivore interactions in elevated atmospheric CO2: Quantitative analyses and guild effects. Oikos 82, 212-222. https://doi.org/10.2307/3546961
- Berryman, A.A., 1992. The origins and evolution of predator-prey theory. Ecology 73, 1530-1535. https://doi.org/10.2307/1940005
- Bilu, E., Hopper, K.R., Coll, M., 2006. Host choice by Aphidius colemani: Effects of plants, plant-aphid combinations and the presence of intra-guild predators. Ecol. Entomol. 31, 331-336. https://doi.org/10.1111/j.1365-2311.2006.00786.x
- Blackman, R.L., Eastop, V.F., 2007. Taxonomic issues, in: van Emden, H.F., Harrington, R. (Eds.), Aphids as crop pests. Oxford University Press, London, pp. 1-29.
- Byeon, Y.W., Tuda, M., Kim, J.H., Choi, M.Y., 2011. Functional response of aphid parasitoids, Aphidius colemani (Hymenoptera: Braconidae) and Aphelinus asychis (Hymenoptera: Aphelinidae). Biocontrol Sci. Techn. 21, 57-70. https://doi.org/10.1080/09583157.2010.521236
- Canadell, J.G., Le Quere, C., Raupach, M.R., Field, C.B., Buitenhuis, E.T., Ciais, P., Conway, T.J., Gillett, N.P., Houghton, R.A., Marland, G., 2007. Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. PNAS 104, 18866-18870. https://doi.org/10.1073/pnas.0702737104
- Cannon, R.J.C., 1998. The implications of predicted climate change for insect pests in the UK, with emphasis on non-indigenous species. Global Change Biol. 4, 785-796. https://doi.org/10.1046/j.1365-2486.1998.00190.x
- Choi, K.S., Ahn, S-J., Kim, S.B., Ahn, J.J., Jung, B.N., Go, S.W., Kim, D-S., 2018. Elevated CO2 may alter pheromonal communication in Helicoverpa armigera (Lepidoptera: Noctuidae). Physiol. Entomol. 43, 169-179. https://doi.org/10.1111/phen.12239
- Das, D.K., Singh, J., Vennila, S., 2011. Emerging crop pest scenario under the impact of climate change - a brief review. J. Agr. Physics 11, 13-20.
- Dixon, A.F.G., 1998. Aphid ecology. Chapman and Hall, London.
- Fernandez-arhex, V., Corley, J.C., 2003. The functional response of parasitoids and its implications for biological control. Biocontrol. Sci. Technol. 13, 403-413. https://doi.org/10.1080/0958315031000104523
- Halsch, C.A., Shapiro, A.M., Fordyce, J.A., Nice, C.C., Thorne, J.H., Waetjen, D.P., Forister, M.L., 2021. Insects and recent climate change. PNAS 118, e2002543117.
- Hassell, M.P., 1978. The dynamics of arthropod predator-prey systems. Princeton University Press, Princeton, NJ.
- Hassell, M.P., 1982. Patterns of parasitism by insect parasitoids in patchy environments. Ecol. Entomol. 7, 365-377. https://doi.org/10.1111/j.1365-2311.1982.tb00678.x
- Heinz, K.M., 1998. Dispersal and dispersion of aphids (Homoptera: Aphididae) and selected natural enemies in spatially subdivided greenhouse environments. Environ. Entomol. 27, 1029-1038. https://doi.org/10.1093/ee/27.4.1029
- Holling, C.S., 1959. The components of predation as revealed by a study of small mammal predation of the European pine sawfly. Can. Entomol. 91, 293-320. https://doi.org/10.4039/Ent91293-5
- Houck, M.A., Strauss, R.E., 1985. The comparative study of functional responses: Experimental design and statistical interpretation. Can. Entomol. 117, 617-629. https://doi.org/10.4039/Ent117617-5
- IPCC, 2013. Annex II: Climate system scenario tables. in: Stocker, T.F., Qin, D., Plattner, G-K., Tignor, M.M.B., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M. (Eds.), Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental panel on climate change. Cambridge University Press, London, pp. 1395-1445.
- Jandel Scientific, 1994. TableCurve user's manual. San Rafael, CA.
- Juliano, S.A., 2001. Nonlinear curve fitting: Predation and functional response curves, in: Scheiner, S.M., Gurevitch, J. (Eds.), Design and analysis of ecological experiments. Oxford University Press, New York, pp 178-196.
- Kalinkat, G., Rall, B.C., Uiterwaal, S.F., Uszko, W., 2023. Empirical evidence of type III functional responses and why it remains rare. Front. Ecol. Evol. 11, 1033818.
- Khan, M.A.Z., Liang, Q., Maria, M.S.M., Liu, T-X., 2016. Effect of temperature on functional response of Aphidius gifuensis (Hymenoptera: Braconidae) parasitizing Myzus persicae (Hemiptera: Aphididae). Fla. Entomol. 99, 696-702. https://doi.org/10.1653/024.099.0419
- Liu, J., Huang, W., Chi, H., Wang, C., Hua, H., Wu, G., 2017. Effects of elevated CO2 on the fitness and potential population damage of Helicoverpa armigera based on two-sex life table. Sci. Rep. 7, 1119.
- Messing, R., Rabasse, J.M., 1995. Oviposition behavior of the polyphagous aphid parasitoid Aphidius colemani Viereck (Hymenoptera: Aphidiidae). Agric. Ecosyst. Environ. 52, 13-17. https://doi.org/10.1016/0167-8809(94)09002-O
- Moreno-Delafuente, A., Fereres, A., Vinuela, E., Medina, P., 2021. Elevated carbon dioxide reduces Aphis gossypii intrinsic increase rates without affecting Aphidius colemani parasitism rate. Biol. Control 163,104741.
- Prado, S.G., Jandricic, S.E., Frank, S.D., 2015. Ecological interactions affecting the efficacy of Aphidius colemani in greenhouse crops. Insects 6, 538-575. https://doi.org/10.3390/insects6020538
- Sangle, P.M., Satpute, S.B., Khan, F.S., Rode, N.S., 2015. Impact of climate change on insects. Trends in Biosci. 8, 3579-3582.
- SAS Institute, 2002. SAS user's guide: Statistics, version 9.4. SAS Institute, Cary, NC.
- Schenk, D., Bacher, S., 2002. Functional response of a generalist insect predator to one of its prey species in the field. J. Anim. Ecol. 71, 524-531. https://doi.org/10.1046/j.1365-2656.2002.00620.x
- Schulze-Sylvester, M., Reineke, A., 2019. Elevated CO2 levels impact fitness traits of vine mealybug Planococcus ficus Signoret, but not its parasitoid Leptomastix dactylopii Howard. Agronomy, 9, 326.
- Solomon, S., Plattner, G-K., Knutti, R., Friedlingstein, P., 2009. Irreversible climate change due to carbon dioxide emissions. PNAS 106, 1704-1709. https://doi.org/10.1073/pnas.0812721106
- Stiling, P., Cornelissen, T., 2007. How does elevated carbon dioxide (CO2) affect plant-herbivore interactions? A field experiment and meta-analysis of CO2-mediated changes on plant chemistry and herbivore performance. Global Change Biol. 13, 1823-1842. https://doi.org/10.1111/j.1365-2486.2007.01392.x
- Vasquez, G.M., Orr, D.B., Baker, J.R., 2006. Efficacy assessment of Aphidius colemani (Hymenoptera: Braconidae) for suppression of Aphis gossypii (Homoptera: Aphididae) in greenhouse-grown chrysanthemum. J. Econ. Entomol. 99, 1104-1111. https://doi.org/10.1093/jee/99.4.1104
- Wagner, D.L., Grames, E.M., Forister, M.L., Stopak, D., 2021. Insect decline in the Anthropocene: Death by a thousand cuts. PNAS 118, e2023989118.
- Xie, H., Zhao, L, Yang, Q., Wang, Z., He, K., 2015. Direct effects of elevated CO2 levels on the fitness performance of Asian corn borer (Lepidoptera: Crambidae) for multigenerations. Environ. Entomol. 44, 1250-1257. https://doi.org/10.1093/ee/nvv102
- Yan, H.-Y., Guo, H.-G., Sun, Y.-C., Ge, F., 2020. Plant phenolics mediated bottom-up effects of elevated CO2 on Acyrthosiphon pisum and its parasitoid Aphidius avenae. Insect Sci. 27, 170-184. https://doi.org/10.1111/1744-7917.12627
- Zamani, A., Talebi A., Fathipour, Y., Baniameri, V., 2006. Temperature-dependent functional response of two aphid parasitoids, Aphidius colemani and Aphidius matricariae (Hymenoptera: Aphididae), on the cotton aphid. J. Pest Sci. 79, 183-188. https://doi.org/10.1007/s10340-006-0132-y