DOI QR코드

DOI QR Code

Acclimation of magnetic activated sludge with 1,4-dioxane and analysis of bacterial flora in the sludge

  • Received : 2023.06.14
  • Accepted : 2023.09.24
  • Published : 2023.09.30

Abstract

Isolation of pollutant-degrading bacteria is important in bioaugmentation, one of the methods for biological degradation of environmental contaminants. We focused on the magnetic activated sludge (MAS) process as a culture method that efficiently concentrates degrading bacteria, and cultured activated sludge with 1,4-dioxane as a model pollutant. After 860 days of operation, MLVSS, which indicates the amount of sludge, increased from 390 mg/L to 10,000 mg/L, and the removal rate of organic matter including 1,4-dioxane, tetrahydrofuran, and glucose in the artificial wastewater reached up to 97%. Based on these results, the MAS process was successfully used to acclimate activated sludge with 1,4-dioxane. Bacterial flora analysis in the MAS showed that bacteria of the genus Pseudonocardia, already reported as 1,4-dioxane degrading bacteria, play an important role in the degradation of this pollutant. The MAS process is a suitable culture method for acclimation of environmental pollutants, and the findings indicate that it can be used as an enrichment unit for pollutant-degrading bacteria.

Keywords

Acknowledgement

This research was partially supported by the Ministry of Education, Science, Sports, Culture and Scientific Research (C), 18K11692, Japan.

References

  1. Y. Sakai, K. Tani, F. Takahashi, "Sewage treatment under conditions of balancing microbial growth and cell decay with a high concentration of activated sludge supplemented with ferromagnetic powder," J. ferment. Bioeng., vol. 74, pp. 413-415, 1992. https://doi.org/10.1016/0922-338X(92)90045-V
  2. Y. Sakai, S. Kurakata, F. Takahashi, "Magnetic forced sedimentation of flocs in activated sludge supplemented with ferromagnetic powder of iron oxide," J. Biosci. Bioeng, Vol. 71, No. 3, pp. 208-210, 1991. https://doi.org/10.1016/0922-338X(91)90114-V
  3. Y. Sakai, T. Terakado, F. Takahashi, "A sewage treatment process using highly condensed activated sludge with an apparatus formagnetic separation, " Fermentation and Bioengineering, Vol. 78, No. 1, pp. 120-122, 1994. (in japanese) https://doi.org/10.1016/0922-338X(94)90193-7
  4. ATSDR, Toxicological Profile for 1,4-dioxane. Agency for Toxic Substances and Disease Registry, 2012.
  5. Vainberg, S., McClay, K., Masuda, H., Root, D., Condee, C., Zylstra, G. J., Steffan, R. J., "Biodegradation of ether pollutants by Pseudonocardia sp. strain ENV478," Applied and Environmental Microbiology, vol. 72, No. 8, pp. 5218-5224, 2006.
  6. Duangmal, K., Thamchaipenet, A., Matsumoto, A.,Takahashi, Y., "Pseudonocardia acaciae sp. nov.,isolated from roots of Acacia auriculiformis A. Cunn. ex Benth," International Journal of Systematic and Evolutionary Microbiology, vol. 59, No. 6, pp. 1487-1491, 2009. https://doi.org/10.1099/ijs.0.007724-0
  7. Reichert, K., Lipski, A., Pradella, S., Stackebrandt, E., Altendorf, K., "Pseudonocardia asaccharolytica sp. nov. and Pseudonocardia sulfidoxydans sp. nov., two new dimethyl disulfide-degrading actinomycetes and emended description of the genus Pseudonocardia," International Journal of Systematic and Evolutionary Microbiology, vol. 48, No. 2, pp. 441-449, 1998. https://doi.org/10.1099/00207713-48-2-441
  8. Seto, M., Masai, E., Ida, M., Hatta, T., Kimbara, K., Fukuda, M., Yano, K., "Multiple polychlorinated biphenyl transformation systems in the grampositive bacterium Rhodococcus sp. strain RHA1," Applied and Environmental Microbiology, vol. 61, No. 12, pp. 4510-4513, 1995. https://doi.org/10.1128/aem.61.12.4510-4513.1995
  9. Kazuichi Isaka, Makiko Udagawa, Yuya Kimura, Kazunari Sei, Michihiko Ike, "Biological wastewater treatment of 1,4-dioxane using polyethylene glycol gel carriers entrapping Afipia sp. D1," Bioscience and Bioengineering, vol. 121, pp. 203-208, 2016. https://doi.org/10.1016/j.jbiosc.2015.06.006
  10. Kim, Y. M., Jeon, J. R., Murugesan, K., Kim, E. J., Chang, Y. S., "Biodegradation of 1,4-dioxane and transformation of related cyclic compounds by a newly isolated Mycobacterium sp. PH-06", Biodegradation, vol. 20, No. 4, pp. 511-519, 2009. https://doi.org/10.1007/s10532-008-9240-0
  11. Daisuke Inoue, Tsubasa Tsunoda, Kazuko Sawada, Norifumi Yamamoto, Yuji Saito, Kazunari Sei, Michihiko Ike, "1,4-Dioxane degradation potential of members of the genera Pseudonocardia and Rhodococcus", Biodegradation, vol. 27, pp. 277-286, 2016. https://doi.org/10.1007/s10532-016-9772-7
  12. Bozhi Sun, Kenton Ko, Juliana A. Ramsay, "Biodegradation of 1,4-dioxane by a Flavobacterium," Biodegradation, vol. 22, pp. 651-659, 2011. https://doi.org/10.1007/s10532-010-9438-9
  13. Coleman N. V., Bui N. B., Holmes A. J., "Soluble diironmonooxygenase gene diversity in soils, sediments and ethaneenrichments," Environmental Microbiology, vol.8, No. 7, pp.1228-1239, 2006 https://doi.org/10.1111/j.1462-2920.2006.01015.x