DOI QR코드

DOI QR Code

TiO2-containing nanocomposite structure: Application and investigation in shoes sports medical soles in physical activities

  • Xufei Li (College of Ministry of sports, Chang'an University) ;
  • H. Elhosiny Ali (Department of Physics, Faculty of Science, King Khalid University) ;
  • Ibrahim Albaijan (Mechanical Engineering Department, College of Engineering at Al Kharj, Prince Sattam Bin Abdulaziz University)
  • 투고 : 2022.09.21
  • 심사 : 2022.12.19
  • 발행 : 2023.10.25

초록

Wearing the right sportswear is one of the essential points in exercising, which is mainly neglected. Sportswear should be suitable for the ambient temperature and not cause more heat or cold in the athlete's body. On the other hand, increased sweating and blood circulation during exercise should not cause fatigue or heatstroke in the athlete. Nanotechnology has grown significantly in the field of producing more efficient equipment in the field of sports. The increase in demand in sports for complete sports equipment has revealed the necessity of using the highest quality materials in this sector. In the world of championship sports, a minor change in equipment can lead to significant changes in causing failure and victory. Since the sole is the most critical part of sports shoes, with the introduction of nanotechnology and nanocomposites, it is possible to help athletes rush and increase their sense of calm and satisfaction. Using nanocomposites in the soles of shoes can improve some of their characteristics, prevent the smell and sweat of shoes, and induce water repellency in these shoes. In this research, titanium dioxide (TiO2) nanocomposite, along with cellulose, has been used to create antibacterial and hydrophobic properties in the soles of sports shoes. The synthesized nanocomposite has been synthesized using the least amount of chemicals, which shows this method's easy and cost-effective synthesis.

키워드

참고문헌

  1. Aali Mohammadi, R., Shirazi, M., Moaref, R., Jamalpour, S., Tamsilian, Y. and Kiasat, A. (2022), Protective Smart Textiles for Sportswear, Woodhead Publishing
  2. Abbasi, S., Peerzada, M.H., Nizamuddin, S. and Mubarak, N.M. (2020), Chapter 25 - Functionalized nanomaterials for the aerospace, vehicle, and sports industries, Elsevier
  3. Ahmad, F., Akhtar, K.S., Anam, W., Mushtaq, B., Rasheed, A., Ahmad, S., Azam, F. and Nawab, Y. (2023), "Recent developments in materials and manufacturing techniques used for sports textiles", Int. J. Polym. Sci., 2021622. https://doi.org/10.1155/2023/2021622.
  4. Alimoradlu, K. and Zamani, A. (2022), "Hydrophobicity in nanocatalysis", Adv. Nano Res., 12(1), 49-63. http://doi.org/10.12989/ANR.2022.12.1.049.
  5. Alsultan Abdulmajeed, S. (2021), "Assessment of microstructure and surface effects on vibrational characteristics of public transportation", Adv. Nano Res., 11(1), 101-113. http://doi.org/10.12989/ANR.2021.11.1.101. 
  6. Arlegui, L., Smallcombe, J.W., Fournet, D., Tolfrey, K. and Havenith, G. (2021), "Body mapping of sweating patterns of pre-pubertal children during intermittent exercise in a warm environment", Eur. J. Appl. Physiol., 121(12), 3561-3576. https://doi.org/10.1007/s00421-021-04811-4.
  7. Bamdad, M., Mohammadimehr, M. and Alambeigi, K. (2020), "Bending and buckling analysis of sandwich Reddy beam considering shape memory alloy wires and porosity resting on Vlasov's foundation", Steel Compos. Struct., 36(6), 671-687. http://doi.org/10.12989/SCS.2020.36.6.671.
  8. Behdinan, K. and Moradi-Dastjerdi, R. (2022), "Thermal buckling resistance of a lightweight lead-free piezoelectric nanocomposite sandwich plate", Adv. Nano Res., 12(6), 593-603. http://doi.org/10.12989/ANR.2022.12.6.593.
  9. Cai, T., Zandi, Y., Agdas, A.S., Salmi, A., Issakhov, A. and Roco-Videla, A. (2021), "The compressive strength of concrete retrofitted with wind ash and steel slag pozzolans with a water-cement based polymers", Adv. Concr. Constr., 11(6), 507-519. https://doi.org/10.12989/ACC.2021.11.6.507.
  10. Cardoso, H., Guimaraes, M., Lopes, L. and Lino Alves, J. (2019), "Development of a rubber sole with an integral cushioning system for casual sport shoes", Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 233(11), 2253-2266. https://doi.org/10.1177/1464420719843154.
  11. Chen, T., Crosbie Robert, C., Anandkumarb, A., Melville, C. and Chan, J. (2021), "Optimized AI controller for reinforced concrete frame structures under earthquake excitation", Adv. Concr. Constr., 11(1), 1-9. https://doi.org/10.12989/ACC.2021.11.1.001.
  12. Chen, Y., Wang, G., Song, L., Shen, X., Wang, J., Huo, J., Wang, R., Xu, T., Dai, S. and Nie, Q. (2017), "Unraveling the crystallization kinetics of supercooled liquid GeTe by ultrafast calorimetry", Crystal Grow. Des., 17(7), 3687-3693. https://doi.org/10.1021/acs.cgd.7b00259.
  13. Cheng, P. (2022), "Comfort perception of tight winter-based sportswear", Int. J. Cloth. Sci. Technol., 35(2), 214-233. https://doi.org/10.1177_15280837221094055. https://doi.org/10.1177_15280837221094055
  14. Chorny, A., Cherunova, I. and Kornev, N. (2021), "Thermophysical interaction in the shoe-foot system during sport activity", Int. J. Heat Mass Transf., 176, 121386. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121386.
  15. Cibo, M., Sator, A., Kazlagic, A. and Omanovic-Miklicanin, E. (2020). "Application and impact of nanotechnology in sport", 30th Scientific-Experts Conference of Agriculture and Food Industry, Springer International Publishing.
  16. Claussen, L., Lloyd, A., Ruiz, D. and Havenith, G. (2022), "Experts' views on sports clothing quality", Int. J. Fashion Des. Technol. Educat., 15(1), 86-97. https://doi.org/10.1080/17543266.2021.2011432.
  17. Cranage, S., Perraton, L., Bowles, K.A. and Williams, C. (2019), "The impact of shoe flexibility on gait, pressure and muscle activity of young children. A systematic review", J. Foot Ankle Res., 12(1), 55. https://doi.org/10.1186/s13047-019-0365-7.
  18. Dai, W., Zand, Y., Sadighi, A.A., Selmi, A., Roco-Videla, A., Wakil, K. and Issakhov, A. (2021), "The economic and management use of rhododendron petals in potas-sium-ion nano batteries anode via efficient computer simulation", Adv. Nano Res., 10(6), 517-529. http://doi.org/10.12989/ANR.2021.10.6.517.
  19. Darabdhara, J. and Ahmaruzzaman, M. (2022), Applications of Graphene and Graphene-Based Nanocomposite for Consumer Nanoproducts, Springer
  20. Dehghanbanadaki, A., Rashid, A.S.A., Ahmad, K., Yunus, N.Z.M. and Said, K.N.M. (2022), "A computational estimation model for the subgrade reaction modulus of soil improved with DCM columns", Geomech. Eng., 28(4), 385. https://doi.org/10.12989/gae.2022.28.4.385.
  21. Dong, G., Tessier, D. and Zhao, Y.F. (2019). "Design of shoe soles using lattice structures fabricated by additive manufacturing", Proceedings of the Design Society: International Conference on Engineering Design, 1(1), 719-728, Cambridge University Press.
  22. Esparham, A., Moradikhou Amir, B., Andalib Faeze, K. and Avanaki Mohammad, J. (2021), "Strength characteristics of granulated ground blast furnace slag-based geopolymer concrete", Adv. Concr. Constr., 11(3), 219-229. https://doi.org/10.12989/ACC.2021.11.3.219.
  23. Gharehaghaji, A.A. (2019), Chapter 18 - Nanotechnology in Sport Clothing, Woodhead Publishing
  24. Ghosh, S. and Das, A.P. (2015), "Modified titanium oxide (TiO2) nanocomposites and its array of applications: A review", Toxicol. Environ. Chem., 97(5), 491-514. https://doi.org/10.1080/02772248.2015.1052204.
  25. Guduru, R.K. and Gupta, A.A. (2022), Consumer Applications of Graphene and Its Composites, Handbook of Consumer Nanoproducts, 471-500.
  26. Guo, S., Zhao, X., Wang, H. and Xu, N. (2023), "Distributed consensus of heterogeneous switched nonlinear multiagent systems with input quantization and DoS attacks", Appl. Math. Comput., 456 128127. https://doi.org/10.1016/j.amc.2023.128127.
  27. He, C., Cao, M., Liu, J., Ge, Z., Zhou, R. and Xu, H. (2022), Nanotechnology in the Olympic Winter Games and Beyond, ACS Publications.
  28. Hebert-Losier, K. and Pamment, M. (2022), "Advancements in running shoe technology and their effects on running economy and performance - a current concepts overview", Sports Biomech., 1-16. https://doi.org/10.1080/14763141.2022.2110512.
  29. Hou, F., Wu, S., Moradi, Z. and Shafiei, N. (2021), "The computational modeling for the static analysis of axially functionally graded micro-cylindrical imperfect beam applying the computer simulation", Eng. Comput., 1-19. https://doi.org/10.1007/s00366-021-01456-x.
  30. Hu, H., Onyebueke, L. and Abatan, A. (2010), "Characterizing and modeling mechanical properties of nanocomposites-review and evaluation", J. Miner. Mater. Character. Eng., 9(4), 275. http://doi.org/10.4236/jmmce.2010.94022.
  31. Huang, S., Zong, G., Wang, H., Zhao, X. and Alharbi, K.H. (2023), "Command filter-based adaptive fuzzy self-triggered control for MIMO nonlinear systems with time-varying full-state constraints", Int. J. Fuzzy Syst., 1-18. https://doi.org/10.1007/s40815-023-01560-8.
  32. Huang, X., Zhang, Y., Moradi, Z. and Shafiei, N. (2021), "Computer simulation via a couple of homotopy perturbation methods and the generalized differential quadrature method for nonlinear vibration of functionally graded non-uniform microtube", Eng. Comput., 1-18. https://doi.org/10.1007/s00366-021-01395-7.
  33. Igiebor, F.A., Ikhajiagbe, B. and Asia, M. (2023), "Green nanotechnology: A modern tool for sustainable agriculture in Nigeria-A Review", Int. J. Horticultur. Sci. Technol., 10(4), 269-286. https://doi.org/10.22059/ijhst.2022.344790.571.
  34. Jia, A., Liu, H., Ren, L., Yun, Y. and Tahouneh, V. (2020), "Influence of porosity distribution on vibration analysis of GPLs-reinforcement sectorial plate", Steel Compos. Struct., 35(1), 111-127. http://doi.org/10.12989/SCS.2020.35.1.111.
  35. Li, M., Guo, Q., Chen, L., Li, L., Hou, H. and Zhao, Y. (2022), "Microstructure and properties of graphene nanoplatelets reinforced AZ91D matrix composites prepared by electromagnetic stirring casting", J. Mater. Res. Technol., 21, 4138-4150. https://doi.org/10.1016/j.jmrt.2022.11.033.
  36. Maheswaran, J., Chellapandian, M. and Kumar, V. (2022), "Behavior of GGBS concrete with pond ash as a partial replacement for sand", Adv. Concr. Constr., 13(3), 233-242. https://doi.org/10.12989/ACC.2022.13.3.233.
  37. Medani, M., Benahmed, A., Zidour, M., Heireche, H., Tounsi, A., Bousahla Abdelmoumen, A., Tounsi, A. and Mahmoud, S.R. (2019), "Static and dynamic behavior of (FG-CNT) reinforced porous sandwich plate using energy principle", Steel Compos. Struct., 32(5), 595-610. http://doi.org/10.12989/SCS.2019.32.5.595.
  38. Mirjavadi Seyed, S., Forsat, M., Barati Mohammad, R. and Hamouda, A.M.S. (2020), "Post-buckling of higher-order stiffened metal foam curved shells with porosity distributions and geometrical imperfection", Steel Compos. Struct., 35(4), 567-578. http://doi.org/10.12989/SCS.2020.35.4.567.
  39. Miteva, A. (2021), "Nanotechnology in Sports and Security", Стратегии на образователната и научната политика, 29(4s), 46-53. https://doi.org/10.53656/str2021-4s-5-nano.
  40. Mohammadi, A., Ebadi, T. and Boroomand, M.R. (2020), "Interface shear between different oil-contaminated sand and construction materials", Geomech. Eng., 20(4), 299. https://doi.org/10.12989/gae.2020.20.4.299.
  41. Mousavi, S.M., Shafiei, N. and Dadvand, A. (2017), "Numerical simulation of subsonic turbulent flow over NACA0012 airfoil: evaluation of turbulence models", Sigma J. Eng. Natural Sci., 35(1), 133-155.
  42. Nam, C., Dong, H. and Lee, Y.-A. (2017), "Factors influencing consumers' purchase intention of green sportswear", Fashion Textiles, 4(1), 2. https://doi.org/10.1186/s40691-017-0091-3.
  43. Nemati, H. and Naemi, R. (2022), "An analytical model to predict foot sole temperature: Implications to insole design for physical activity in sport and exercise", Appl. Sci., 12(13), 6806. https://doi.org/10.3390/app12136806.
  44. Omanovic-Miklicanin, E., Badnjevic, A., Kazlagic, A. and Hajlovac, M. (2020), "Nanocomposites: a brief review", Health Technol., 10(1), 51-59. https://doi.org/10.1007/s12553-019-00380-x.
  45. Omidi, S., Oskooee, M.B. and Shafiei, N. (2013), "Finite element analysis of an ultra-fine grained Titanium dental implant covered by different thicknesses of hydroxyapatite layer", Indian J. Dent., 4(1), 1-4. https://doi.org/10.1016/j.ijd.2012.10.002.
  46. Paluska, S.A. and Schwenk, T.L. (2000), "Physical activity and mental health", Sports Med., 29(3), 167-180. https://doi.org/10.2165/00007256-200029030-00003.
  47. Pitsa, D. and Danikas, M.G. (2011), "Interfaces features in polymer nanocomposites: A review of proposed models", Nano. 6(06), 497-508. https://doi.org/10.1142/S1793292011002949.
  48. Popescu, T., Oktaviani Matei, C., Culita, D.C., Maraloiu, V.-A., Rostas, A.M., Diamandescu, L., Iacob, N., Savopol, T., Ilas, M.C., Feder, M., Lupu, A.R., Iacoban, A.C., Vlaicu, I.D. and Moisescu, M.G. (2022), "Facile synthesis of low toxicity iron oxide/TiO2 nanocomposites with hyperthermic and photo-oxidation properties", Sci. Rep., 12(1), 6887. https://doi.org/10.1038/s41598-022-11003-3.
  49. Raj, A., Sathyan, D. and Mini, K.M. (2021), "Performance evaluation of natural fiber reinforced high volume fly ash foam concrete cladding", Adv. Concr. Constr., 11(2), 151-161. https://doi.org/10.12989/ACC.2021.11.2.151.
  50. Ramteke Prashik, M., Panda Subrata, K. and Sharma, N. (2019), "Effect of grading pattern and porosity on the eigen characteristics of porous functionally graded structure", Steel Compos. Struct., 33(6), 865-875. http://doi.org/10.12989/SCS.2019.33.6.865.
  51. Salopek Cubric, I., Potocic Matkovic, V.M., Pavlovic, Z. and Pavko Cuden, A. (2022), "Material and structural functionalization of knitted fabrics for sportswear", Materials, 15(9), 3306. https://doi.org/10.3390/ma15093306.
  52. Shahram Ghaedi Faramoushjan Hossein Jalalifar, R.K. (2021), "Mathematical modelling and numerical study for buckling study in concrete beams containing carbon nanotubes", Adv. Concr. Constr., 11(6), 521-529. https://doi.org/10.12989/ACC.2021.11.6.521.
  53. Shariq, M., Pal, S., Chaubey, R. and Masood, A. (2022), "An experimental and analytical study into the strength of hooked-end steel fiber reinforced HVFA concrete", Adv. Concr. Constr., 13(1), 35-43. https://doi.org/10.12989/ACC.2022.13.1.035.
  54. Su, Z., Meng, J. and Su, Y. (2023), "Application of SiO2 nanocomposite ferroelectric material in preparation of trampoline net for physical exercise", Adv. Nano Res., 14(4), 355-362. https://doi.org/10.12989/anr.2023.14.4.355
  55. Tang, F., Wang, H., Zhang, L., Xu, N. and Ahmad, A.M. (2023), "Adaptive optimized consensus control for a class of nonlinear multi-agent systems with asymmetric input saturation constraints and hybrid faults", Commun. Nonlinear Sci. Numer. Simul., 126, 107446. https://doi.org/10.1016/j.cnsns.2023.107446.
  56. Temesgen, A.G., Tursucular, O .F., Eren, R. and Ulcay, Y. (2018), "Novel applications of nanotechnology in modification of textile fabrics properties and apparel", Int. J. Adv. Multidiscip. Res. 5(12), 49-58. http://doi.org/10.22192/ijamr.2018.05.12.005.
  57. Thakur, P., Chahar, D. and Thakur, A. (2022), "Visible light assisted photocatalytic degradation of methylene blue dye using Ni doped Co-Zn nanoferrites", Adv. Nano Res., 12(4), 415-426. http://doi.org/10.12989/ANR.2022.12.4.415.
  58. Ugurlu, O.F. and Ozturk, C.A. (2021), "Experimental investigation for the use of tailings as paste-fill material through design of experiment", Geomech. Eng., 26(5), 465. https://doi.org/10.12989/gae.2021.26.5.465.
  59. Wang, P., Gao, Z., Pan, F., Moradi, Z., Mahmoudi, T. and Khadimallah, M.A. (2022), "A couple of GDQM and iteration techniques for the linear and nonlinear buckling of bi-directional functionally graded nanotubes based on the nonlocal strain gradient theory and high-order beam theory", Eng. Anal. Bound. Elem., 143, 124-136. https://doi.org/10.1016/j.enganabound.2022.06.007.
  60. Wang, T., Zhou, G., Wang, J. and Wang, D. (2020), "Impact of spatial variability of geotechnical properties on uncertain settlement of frozen soil foundation around an oil pipeline", Geomech. Eng., 20(1), 19. https://doi.org/10.12989/gae.2020.20.1.019.
  61. Wang, Y., Jia, Q. and Deng, T. (2023), "The role of nanotechnology in reducing the impact on the ball and increasing the speed of its movement", Geomech. Eng., 32(5), 463-474. https://doi.org/10.12989/gae.2023.32.5.463.
  62. West, A.M., Tarrier, J., Hodder, S. and Havenith, G. (2019), "Sweat distribution and perceived wetness across the human foot: the effect of shoes and exercise intensity", Ergonomics, 62(11), 1450-1461. https://doi.org/10.1080/00140139.2019.1657185.
  63. Wu, W., Xu, N., Niu, B., Zhao, X. and Ahmad, A.M. (2023), "Low-computation adaptive saturated self-triggered tracking control of uncertain networked systems", Electronics, 12(13), 2771. https://doi.org/10.3390/electronics12132771.
  64. Xu, W., Pan, G., Moradi, Z. and Shafiei, N. (2021), "Nonlinear forced vibration analysis of functionally graded non-uniform cylindrical microbeams applying the semi-analytical solution", Compos. Struct., 114395. https://doi.org/10.1016/j.compstruct.2021.114395.
  65. Yang, D., Wang, J. and Liu, L. (2022), "Visual management of sports based on intelligent analysis of big data", Mobile Inform. Syst., 2834226. https://doi.org/10.1155/2022/2834226.
  66. Zhang, H., Zhao, X., Wang, H., Niu, B. and Xu, N. (2023), "Adaptive tracking control for output-constrained switched MIMO pure-feedback nonlinear systems with input saturation", J. Syst. Sci. Complex., 36(3), 960-984. https://doi.org/10.1007/s11424-023-1455-y.
  67. Zhang, H., Zou, Q., Ju, Y., Song, C. and Chen, D. (2022), "Distance-based support vector machine to predict DNA N6- methyladenine modification", Curr. Bioinform., 17(5), 473-482. https://doi.org/10.2174/1574893617666220404145517.
  68. Zhao, K., Chen, Y., Yu, F., Jian, W., Zheng, M. and Zeng, H. (2022a), "A biodegradable magnesium alloy sample induced rat osteochondral defect repair through Wnt/β,-catenin signaling pathway", Adv. Nano Res., 12(3), 301-317. http://doi.org/10.12989/ANR.2022.12.3.301.
  69. Zhao, W., Suo, H., Wang, S., Ma, L., Wang, L., Wang, Q. and Zhang, Z. (2022b), "Mg gas infiltration for the fabrication of MgB2 pellets using nanosized and microsized B powders", J. Eur. Ceram. Soc., 42(15), 7036-7048. https://doi.org/10.1016/j.jeurceramsoc.2022.08.029.
  70. Zhao, Y., Jing, J., Chen, L., Xu, F. and Hou, H. (2021), "Current research status of interface of ceramic-metal laminated composite material for armor protection", Acta Metall Sin. 57(9), 1107-1125. https://doi.org/10.11900/0412.1961.2021.00051.
  71. Zhao, Y., Niu, B., Zong, G., Xu, N. and Ahmad, A.M. (2023), "Event-triggered optimal decentralized control for stochastic interconnected nonlinear systems via adaptive dynamic programming", Neurocomputing, 539, 126163. https://doi.org/10.1016/j.neucom.2023.03.024.
  72. Zhou, C., Zhang, Z., Zhang, J., Fang, Y. and Tahouneh, V. (2020), "Vibration analysis of FG porous rectangular plates reinforced by graphene platelets", Steel Compos. Struct., 34(2), 215-226. http://doi.org/10.12989/SCS.2020.34.2.215.
  73. Zolfagharian, A., Lakhi, M., Ranjbar, S. and Bodaghi, M. (2021), "Custom shoe sole design and modeling toward 3D printing", Int. J. Bioprint., 7(4). https://doi.org/10.18063%2Fijb.v7i4.396. https://doi.org/10.18063%2Fijb.v7i4.396