References
- Abdon, A. and Dumitru, B. (2016), "New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model", Therm. Sci., 20(2), 763-769. https://doi.org/https://doi.org/10.2298/TSCI160111018A
- Abouelregal, A. E. and Atta, D. (2022), "A rigid cylinder of a thermoelastic magnetic semiconductor material based on the generalized Moore-Gibson-Thompson heat equation model", Appl. Phys. A, 128(2), 1-14. https://doi.org/10.1007/s00339-021-05240-y
- Abouelregal, A.E. and Marin, M. (2020a), "The size-dependent thermoelastic vibrations of nanobeams subjected to harmonic excitation and rectified sine wave heating", Mathematics, 8(7), 1-13. https://doi.org/10.3390/math8071128
- Abouelregal, A.E. and Marin, M. (2020b), "The response of nanobeams with temperature-dependent properties using state-space method via modified couple stress theory", Symmetry, 12(8), 1276, 1-17. https://doi.org/10.3390/sym12081276
- Alberto Conejero, J., Lizama, C., Rodenas, F. and Sousa Ramos, J. (2015), "Chaotic behaviour of the solutions of the moore-gibson-thompson equation," Appl. Math. Inf. Sci, 9(5), 2233-2238. https://doi.org/10.12785/amis/090503
- Bazarra, N., Fernandez, J.R. and Quintanilla, R. (2021),"Analysis of a Moore-Gibson-Thompson thermoelastic problem", J. Comput. Appl. Math., 382, 113058. https://doi.org/10.1016/j.cam.2020.113058
- Biot, M.A. (1956), "Thermoelasticity and irreversible thermodynamics", J. Appl. Phys., 27(3), 240-253. https://doi.org/10.1063/1.1722351
- Caputo, M. and Fabrizio, M. (2015), "A new definition of fractional derivative without singular kernel", Prog. Fract. Differ. Appl., 1(2), 73-85. https://doi.org/10.12785/pfda/010201
- Cattaneo, C. (1958),"A form of heat-conduction equations which eliminates the paradox of instantaneous propagation", Comptes Rendus, Acad. Sci. Paris Serie II, 247, 431-433.
- Chen, P.J. and Gurtin, M.E. (1968), "On a theory of heat conduction involving two temperatures", Zeitschrift Fur Angewandte Mathematik Und Physik ZAMP, 19(4), 614-627. https://doi.org/10.1007/BF01594969
- Craciun, E.M., Baesu, E. and Soos, E. (2004)," General solution in terms of complex potentials for incremental antiplane states in prestressed and prepolarized piezoelectric crystals: application to Mode III fracture propagation", IMA J. Appl. Math., 70(1), 39-52. https://doi.org/10.1093/imamat/hxh060
- Craciun, E.M., Baesu, E. and Soos, E. (2005), "General solution in terms of complex potentials for incremental antiplane states in prestressed and prepolarized piezoelectric crystals: Application to Mode III fracture propagation", IMA J. Appl. Math., 70(1), 39-52. https://doi.org/10.1093/IMAMAT/HXH060
- Dhaliwal, R.S. and Sheriff, H.H. (1980), "Generalized thermoselasticity for anisotropic media", Quarter. Appl. Math., 38(1), 1-8. https://doi.org/https://doi.org/10.1090/qam/575828
- Duhamel, J.M. (1938), "Memories of the molecular actions developed by changes in temperatures in solids", Mummy Div. Sav., 5, 440-498.
- Green, A.E. and Lindsay, K.A. (1972), "Thermoelasticity", J. Elast., 2(1), 1-7. https://doi.org/10.1007/BF00045689
- Green, A.E. and Naghdi, P.M. (1991), "A re-examination of the basic postulates of thermomechanics", Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 432(1885), 171-194. https://doi.org/10.1098/rspa.1991.0012
- Green, A.E. and Naghdi, P.M. (1992), "On undamped heat waves in an elastic solid", J. Therm. Stress., 15(2), 253-264. https://doi.org/10.1080/01495739208946136
- Green, A.E. and Naghdi, P.M. (1993), "Thermoelasticity without energy dissipation", J. Elast., 31(3), 189-208. https://doi.org/10.1007/BF00044969
- Kaur, I. and Singh, K. (2021a), "Thermoelastic damping in a thin circular transversely isotropic Kirchhoff-Love plate due to GN theory of type III", Arch. Appl. Mech., 91, 2143-2157. https://doi.org/10.1007/s00419-020-01874-1
- Kaur, I. and Singh, K. (2021b), "Fiber-reinforced magneto-thermoelastic composite material with hyperbolic two-temperature, fractional-order three-phase lag and new modified couple stress theory", Wave. Random Complex Med., 1-24. https://doi.org/10.1080/17455030.2021.1991603
- Kaur, I. and Singh, K. (2022), "A study of influence of hall effect in semiconducting spherical shell with Moore-Gibson-Thompsonphoto-thermoelastic model", Iranian J. Sci. Technol. Transact. Mech. Eng., 47, 661-671. https://doi.org/10.1007/s40997-022-00532-x
- Kaur, I. and Singh, K. (2023a), "The two-temperature effect on a semiconducting thermoelastic solid cylinder based on the modified Moore - Gibson - Thompson heat transfer", St. Petersburg Polytechnic University Journal - Physics and Mathematics, 16(1), 65-81. https://doi.org/10.18721/JPM.16106
- Kaur, I. and Singh, K. (2023b), "Thermoelastic analysis of semiconducting solid sphere based on modified Moore-Gibson-Thompson heat conduction with Hall Effect", SN Appl. Sci., 5(1), 1-16. https://doi.org/10.1007/s42452-022-05229-z
- Kaur, I., Singh, K. and Craciun, E.M. (2022), "A mathematical study of a semiconducting thermoelastic rotating solid cylinder with modified Moore-Gibson-thompson heat transfer under the hall effect", Mathematics, 10(14), 1-16. https://doi.org/10.3390/math10142386
- Lasiecka, I. and Wang, X. (2015), "Moore-Gibson-Thompson equation with memory, part II: General decay of energy", Anal. PDEs, 1-22. https://doi.org/10.48550/arXiv.1505.07525
- Lata, P. and Kaur, H. (2022), "Effect of two temperature and energy dissipation in an axisymmetric modified couple stress isotropic thermoelastic solid", Coupled Syst. Mech., 11(3), 199-215. https://doi.org/10.12989/csm.2022.11.3.199
- Lord, H.W. and Shulman, Y. (1967), "A generalized dynamical theory of thermoelasticity", J. Mech. Phys. Solids, 15(5), 299-309. https://doi.org/10.1016/0022-5096(67)90024-5
- Mahdy, A.M.S., Lotfy, K., Ahmed, M.H., El-Bary, A. and Ismail, E.A. (2020), "Electromagnetic Hall current effect and fractional heat order for microtemperature photo-excited semiconductor medium with laser pulses", Result. Phys., 17, 103161, 1-9. https://doi.org/10.1016/j.rinp.2020.103161
- Marin, M.I., Agarwal, R.P. and Mahmoud, S. (2013), "Nonsimple material problems addressed by the Lagrange's identity", Bound. Value Probl., 2013(1), 135. https://doi.org/10.1186/1687-2770-2013-135
- Marin, M., Othman, M.I.A., Seadawy, A.R. and Carstea, C. (2020), "A domain of influence in the Moore-Gibson-Thompson theory of dipolar bodies", J. Taibah Univ. Sci., 14(1), 653-660. https://doi.org/10.1080/16583655.2020.1763664
- Marin, M., O chsner, A. and Craciun, E.M. (2020a), "A generalization of the Saint-Venant's principle for an elastic body with dipolar structure", Continuum Mech. Thermodyn., 32(1), 269-278. https://doi.org/10.1007/s00161-019-00827-6
- Marin, M., O chsner, A. and Craciun, E.M. (2020b), "A generalization of the Gurtin's variational principle in thermoelasticity without energy dissipation of dipolar bodies", Continuum Mech. Thermodyn., 32(6), 1685-1694. https://doi.org/10.1007/s00161-020-00873-5
- Nasr, M.E. and Abouelregal, A.E. (2022)," Light absorption process in a semiconductor infinite body with a cylindrical cavity via a novel photo-thermoelastic MGT model", Arch. Appl. Mech., 92(5), 1529-1549. https://doi.org/10.1007/S00419-022-02128-Y
- Quintanilla, R. (2019), "Moore-Gibson-Thompson thermoelasticity", Math. Mech. Solids, 24(12), 4020-4031. https://doi.org/10.1177/1081286519862007
- Quintanilla, R. (2020), "Moore-Gibson-Thompson thermoelasticity with two temperatures", Appl. Eng. Sci., 1, 100006. https://doi.org/10.1016/j.apples.2020.100006
- Vernotte, P. (1958), "Les paradoxes de la theorie continue de l'equation de lachaleur", Comptes Rendus, Acad. Sci. Paris, Serie II, 246, 3154-3155.
- Vernotte, P. (1961), "Some possible complications in the phenomena of thermal conduction", Comptes Rendus, Acad. Sci. Paris, Serie II, 252, 2190-2191.
- William H. Press, Saul A. Teukolsky, Brian P. Flannery (1980), Numerical recipes in Fortran, Press Syndicate of the University of Cambridge, N.Y., U.S.A.
- Zhou, H., Li, P., Jiang, H., Xue, H. and Bo, B. (2022), "Nonlocal dual-phase-lag thermoelastic dissipation of size-dependent micro/nano-ring resonators", Int. J. Mech. Sci., 219, 107080, 1-17. https://doi.org/10.1016/j.ijmecsci.2022.107080
- Zhou, H., Shao, D., Song, X. and Li, P. (2022),"Three-dimensional thermoelastic damping models for rectangular micro/nanoplate resonators with nonlocal-single-phase-lagging effect of heat conduction", Int. J. Heat Mass Transf., 196, 123271, 1-16. https://doi.org/10.1016/j.ijheatmasstransfer.2022.123271