DOI QR코드

DOI QR Code

Effect of nonlocal-nonsingular Fractional Moore-Gibson-Thompson theory in semiconductor cylinder

  • Iqbal Kaur (Department of Mathematics, Government College for Girls) ;
  • Kulvinder Singh (ACSE Department, UIET, Kurukshetra University)
  • Received : 2021.09.19
  • Accepted : 2023.07.27
  • Published : 2023.10.25

Abstract

This study is aimed to investigate the electrically conductive properties of epoxy nanocomposites exposed to an acidic environment under various mechanical loads. For simultaneous assessment of the acidic environment and mechanical load on the electrical conductivity of the samples, the samples with and without carbon nanotubes were exposed to the acidic environment under three different loading conditions for 20 days. Then, the aged samples' strength and flexural stiffness degradation under crude oil and bending stress were measured using a three-point flexural test. The aged samples in the acidic environment and under 80 percent of their intact ultimate strength revealed a 9% and 26% reduction of their electrical conductivity for samples with and without CNTs, respectively. The presence of nanoparticles declined flexural stiffness by about 16.39%. Scanning electron microscopy (SEM) images of the specimen were used to evaluate the dispersion quality of CNTs. The results of this study can be exploited in constructing conductive composite electrodes to be used in petroleum environments such as crude oil electrostatic tanks.

Keywords

References

  1. Abdon, A. and Dumitru, B. (2016), "New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model", Therm. Sci., 20(2), 763-769. https://doi.org/https://doi.org/10.2298/TSCI160111018A
  2. Abouelregal, A. E. and Atta, D. (2022), "A rigid cylinder of a thermoelastic magnetic semiconductor material based on the generalized Moore-Gibson-Thompson heat equation model", Appl. Phys. A, 128(2), 1-14. https://doi.org/10.1007/s00339-021-05240-y
  3. Abouelregal, A.E. and Marin, M. (2020a), "The size-dependent thermoelastic vibrations of nanobeams subjected to harmonic excitation and rectified sine wave heating", Mathematics, 8(7), 1-13. https://doi.org/10.3390/math8071128
  4. Abouelregal, A.E. and Marin, M. (2020b), "The response of nanobeams with temperature-dependent properties using state-space method via modified couple stress theory", Symmetry, 12(8), 1276, 1-17. https://doi.org/10.3390/sym12081276
  5. Alberto Conejero, J., Lizama, C., Rodenas, F. and Sousa Ramos, J. (2015), "Chaotic behaviour of the solutions of the moore-gibson-thompson equation," Appl. Math. Inf. Sci, 9(5), 2233-2238. https://doi.org/10.12785/amis/090503
  6. Bazarra, N., Fernandez, J.R. and Quintanilla, R. (2021),"Analysis of a Moore-Gibson-Thompson thermoelastic problem", J. Comput. Appl. Math., 382, 113058. https://doi.org/10.1016/j.cam.2020.113058
  7. Biot, M.A. (1956), "Thermoelasticity and irreversible thermodynamics", J. Appl. Phys., 27(3), 240-253. https://doi.org/10.1063/1.1722351
  8. Caputo, M. and Fabrizio, M. (2015), "A new definition of fractional derivative without singular kernel", Prog. Fract. Differ. Appl., 1(2), 73-85. https://doi.org/10.12785/pfda/010201
  9. Cattaneo, C. (1958),"A form of heat-conduction equations which eliminates the paradox of instantaneous propagation", Comptes Rendus, Acad. Sci. Paris Serie II, 247, 431-433.
  10. Chen, P.J. and Gurtin, M.E. (1968), "On a theory of heat conduction involving two temperatures", Zeitschrift Fur Angewandte Mathematik Und Physik ZAMP, 19(4), 614-627. https://doi.org/10.1007/BF01594969
  11. Craciun, E.M., Baesu, E. and Soos, E. (2004)," General solution in terms of complex potentials for incremental antiplane states in prestressed and prepolarized piezoelectric crystals: application to Mode III fracture propagation", IMA J. Appl. Math., 70(1), 39-52. https://doi.org/10.1093/imamat/hxh060
  12. Craciun, E.M., Baesu, E. and Soos, E. (2005), "General solution in terms of complex potentials for incremental antiplane states in prestressed and prepolarized piezoelectric crystals: Application to Mode III fracture propagation", IMA J. Appl. Math., 70(1), 39-52. https://doi.org/10.1093/IMAMAT/HXH060
  13. Dhaliwal, R.S. and Sheriff, H.H. (1980), "Generalized thermoselasticity for anisotropic media", Quarter. Appl. Math., 38(1), 1-8. https://doi.org/https://doi.org/10.1090/qam/575828
  14. Duhamel, J.M. (1938), "Memories of the molecular actions developed by changes in temperatures in solids", Mummy Div. Sav., 5, 440-498.
  15. Green, A.E. and Lindsay, K.A. (1972), "Thermoelasticity", J. Elast., 2(1), 1-7. https://doi.org/10.1007/BF00045689
  16. Green, A.E. and Naghdi, P.M. (1991), "A re-examination of the basic postulates of thermomechanics", Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 432(1885), 171-194. https://doi.org/10.1098/rspa.1991.0012
  17. Green, A.E. and Naghdi, P.M. (1992), "On undamped heat waves in an elastic solid", J. Therm. Stress., 15(2), 253-264. https://doi.org/10.1080/01495739208946136
  18. Green, A.E. and Naghdi, P.M. (1993), "Thermoelasticity without energy dissipation", J. Elast., 31(3), 189-208. https://doi.org/10.1007/BF00044969
  19. Kaur, I. and Singh, K. (2021a), "Thermoelastic damping in a thin circular transversely isotropic Kirchhoff-Love plate due to GN theory of type III", Arch. Appl. Mech., 91, 2143-2157. https://doi.org/10.1007/s00419-020-01874-1
  20. Kaur, I. and Singh, K. (2021b), "Fiber-reinforced magneto-thermoelastic composite material with hyperbolic two-temperature, fractional-order three-phase lag and new modified couple stress theory", Wave. Random Complex Med., 1-24. https://doi.org/10.1080/17455030.2021.1991603
  21. Kaur, I. and Singh, K. (2022), "A study of influence of hall effect in semiconducting spherical shell with Moore-Gibson-Thompsonphoto-thermoelastic model", Iranian J. Sci. Technol. Transact. Mech. Eng., 47, 661-671. https://doi.org/10.1007/s40997-022-00532-x
  22. Kaur, I. and Singh, K. (2023a), "The two-temperature effect on a semiconducting thermoelastic solid cylinder based on the modified Moore - Gibson - Thompson heat transfer", St. Petersburg Polytechnic University Journal - Physics and Mathematics, 16(1), 65-81. https://doi.org/10.18721/JPM.16106
  23. Kaur, I. and Singh, K. (2023b), "Thermoelastic analysis of semiconducting solid sphere based on modified Moore-Gibson-Thompson heat conduction with Hall Effect", SN Appl. Sci., 5(1), 1-16. https://doi.org/10.1007/s42452-022-05229-z
  24. Kaur, I., Singh, K. and Craciun, E.M. (2022), "A mathematical study of a semiconducting thermoelastic rotating solid cylinder with modified Moore-Gibson-thompson heat transfer under the hall effect", Mathematics, 10(14), 1-16. https://doi.org/10.3390/math10142386
  25. Lasiecka, I. and Wang, X. (2015), "Moore-Gibson-Thompson equation with memory, part II: General decay of energy", Anal. PDEs, 1-22. https://doi.org/10.48550/arXiv.1505.07525
  26. Lata, P. and Kaur, H. (2022), "Effect of two temperature and energy dissipation in an axisymmetric modified couple stress isotropic thermoelastic solid", Coupled Syst. Mech., 11(3), 199-215. https://doi.org/10.12989/csm.2022.11.3.199
  27. Lord, H.W. and Shulman, Y. (1967), "A generalized dynamical theory of thermoelasticity", J. Mech. Phys. Solids, 15(5), 299-309. https://doi.org/10.1016/0022-5096(67)90024-5
  28. Mahdy, A.M.S., Lotfy, K., Ahmed, M.H., El-Bary, A. and Ismail, E.A. (2020), "Electromagnetic Hall current effect and fractional heat order for microtemperature photo-excited semiconductor medium with laser pulses", Result. Phys., 17, 103161, 1-9. https://doi.org/10.1016/j.rinp.2020.103161
  29. Marin, M.I., Agarwal, R.P. and Mahmoud, S. (2013), "Nonsimple material problems addressed by the Lagrange's identity", Bound. Value Probl., 2013(1), 135. https://doi.org/10.1186/1687-2770-2013-135
  30. Marin, M., Othman, M.I.A., Seadawy, A.R. and Carstea, C. (2020), "A domain of influence in the Moore-Gibson-Thompson theory of dipolar bodies", J. Taibah Univ. Sci., 14(1), 653-660. https://doi.org/10.1080/16583655.2020.1763664
  31. Marin, M., O chsner, A. and Craciun, E.M. (2020a), "A generalization of the Saint-Venant's principle for an elastic body with dipolar structure", Continuum Mech. Thermodyn., 32(1), 269-278. https://doi.org/10.1007/s00161-019-00827-6
  32. Marin, M., O chsner, A. and Craciun, E.M. (2020b), "A generalization of the Gurtin's variational principle in thermoelasticity without energy dissipation of dipolar bodies", Continuum Mech. Thermodyn., 32(6), 1685-1694. https://doi.org/10.1007/s00161-020-00873-5
  33. Nasr, M.E. and Abouelregal, A.E. (2022)," Light absorption process in a semiconductor infinite body with a cylindrical cavity via a novel photo-thermoelastic MGT model", Arch. Appl. Mech., 92(5), 1529-1549. https://doi.org/10.1007/S00419-022-02128-Y
  34. Quintanilla, R. (2019), "Moore-Gibson-Thompson thermoelasticity", Math. Mech. Solids, 24(12), 4020-4031. https://doi.org/10.1177/1081286519862007
  35. Quintanilla, R. (2020), "Moore-Gibson-Thompson thermoelasticity with two temperatures", Appl. Eng. Sci., 1, 100006. https://doi.org/10.1016/j.apples.2020.100006
  36. Vernotte, P. (1958), "Les paradoxes de la theorie continue de l'equation de lachaleur", Comptes Rendus, Acad. Sci. Paris, Serie II, 246, 3154-3155.
  37. Vernotte, P. (1961), "Some possible complications in the phenomena of thermal conduction", Comptes Rendus, Acad. Sci. Paris, Serie II, 252, 2190-2191.
  38. William H. Press, Saul A. Teukolsky, Brian P. Flannery (1980), Numerical recipes in Fortran, Press Syndicate of the University of Cambridge, N.Y., U.S.A.
  39. Zhou, H., Li, P., Jiang, H., Xue, H. and Bo, B. (2022), "Nonlocal dual-phase-lag thermoelastic dissipation of size-dependent micro/nano-ring resonators", Int. J. Mech. Sci., 219, 107080, 1-17. https://doi.org/10.1016/j.ijmecsci.2022.107080
  40. Zhou, H., Shao, D., Song, X. and Li, P. (2022),"Three-dimensional thermoelastic damping models for rectangular micro/nanoplate resonators with nonlocal-single-phase-lagging effect of heat conduction", Int. J. Heat Mass Transf., 196, 123271, 1-16. https://doi.org/10.1016/j.ijheatmasstransfer.2022.123271