DOI QR코드

DOI QR Code

Functional graphene sheets-TiO2 nanocomposites and their photocatalytic performance for wastewater treatment

  • R. Aitbelale (University of Chouaïb Doukkali, Faculty of sciences, Laboratory of Catalysis and Corrosion of Materials) ;
  • A. Timesli (Hassan II University of Casablanca, National Higher School of Arts and Crafts (ENSAM CASABLANCA), AICSE Laboratory) ;
  • A. Sahibed-dine (University of Chouaïb Doukkali, Faculty of sciences, Laboratory of Catalysis and Corrosion of Materials)
  • 투고 : 2022.03.04
  • 심사 : 2023.08.24
  • 발행 : 2023.10.25

초록

In this paper, a powerful photocatalyst based on carbon nanocomposite is developed in order to obtain a new material applicable in water treatment and especially for the discoloration of effluents used in the textile industry. For that, TiO2-graphene nanocomposites have been successfully synthesized by a mixture of Functionalized Graphene Sheet (FGS) and tetrachlorotitanium complexes to form FGS-TiO2 nanocomposite. In the presence of an anionic surfactant, we used a new chemical process to functionalize graphene sheets in order to make them an excellent medium for blocking and preventing the aggregation of TiO2 nanoparticles. The components of these nanocomposites are characterized by means of X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM), which confirms the successful formation of the FGS-TiO2 nanocomposite. It was found that the TiO2 nanoparticles were dispersed uniformly on the graphene plane which possesses better charge separation capability than pure TiO2. The FGS-TiO2 nanocomposites exhibited higher photocatalytic activity compared to pure TiO2 for the removal of three dyes: such as Methylene Blue (MB), Bromophenol Blue (BB) and Alizarin Red-S (AR) in water. The removal process was fast and more efficient with FGS-TiO2 nanocomposite in daylight (in the absence of UV irradiation) compared to pure TiO2 nanoparticles without and under UV in all pH range.

키워드

참고문헌

  1. Allen, M.J., Tung, V.C. and Kaner, R.B. (2010), "Honeycomb carbon: A review of graphene", Chem. Rev., 110, 132-145. https://doi.org/10.1021/cr900070d
  2. Aitbelale, R. and Timesli, A. (2023), "Effect of functionalized graphene addition on mechanical and thermal properties of high density polyethylene", J. Polym. Eng., 43(4), 343-353. https://doi.org/10.1515/polyeng-2022-0200
  3. Aitbelale, R., Abala, I., M'Hamdi Alaoui, F.E., Sahibed-dine, A., Rujas, N.M. and Aguilar, F. (2019a), "Characterization and determination of thermodynamic properties of waste cooking oil biodiesel: Experimental, correlation and modeling density over a wide temperature range up to 393.15 and pressure up to 140 MPa", Fluid Phase. Equilibr., 497, 87-96. https://doi.org/10.1016/j.fluid.2019.06.003
  4. Aitbelale, R., Chhiti, Y., M'Hamdi Alaoui, F.E., Sahibed-dine, A., Rujas, N.M. and Aguilar, F. (2019b), "High-pressure soybean oil biodiesel density: experimental measurements, correlation by Tait equation, and perturbed chain SAFT (PC-SAFT) modeling", J. Chem. Eng. Data., 64(9), 3994-4004. https://doi.org/10.1021/acs.jced.9b00391
  5. Al-Furjan, M.S.H., Habibi, M., Ni, J., Jung, D. and Tounsi, A. (2022a), "Frequency simulation of viscoelastic multi-phase reinforced fully symmetric systems", Eng. Comput., 38, 3725-3741. https://doi.org/10.1007/s00366-020-01200-x
  6. Al-Furjan, M.S.H., Habibi, M., Jung, D.w., Sadeghi, S., Safarpour, H., Tounsi, A. and Chen, G. (2022b), "A computational framework for propagated waves in a sandwich doubly curved nanocomposite panel", Eng. Comput., 38, 1679-1696. https://doi.org/10.1007/s00366-020-01130-8
  7. Arshid, E., Khorasani, M., Soleimani-Javid, Z., Amir, S. and Tounsi, A, (2022), "Porosity-dependent vibration analysis of FG microplates embedded by polymeric nanocomposite patches considering hygrothermal effect via an innovative plate theory", Eng. Comput., 38, 4051-4072. https://doi.org/10.1007/s00366-021-01382-y
  8. Al-Furjan, M.S.H., Habibi, M., Ghabussi, A., Safarpour, H., Safarpour, M. and Tounsi, A. (2021), "Non-polynomial framework for stress and strain response of the FG-GPLRC disk using three-dimensional refined higher-order theory", Eng. Struct., 228, 111496. https://doi.org/10.1016/j.engstruct.2020.111496.
  9. Aitbelale, R., Abala, I., M'Hamdi Alaoui, F.E., Sahibed-dine, A., Rujas, N.M. and Aguilar, F. (2019), "Characterization and determination of thermodynamic properties of waste cooking oil biodiesel: Experimental, correlation and modeling density over a wide temperature range up to 393.15 and pressure up to 140 MPa", Fluid Phare. Equilibr., 497, 87-96. https://doi.org/10.1016/j.fluid.2019.06.003
  10. Bendenia N., Zidour M., Bousahla A.A., Bourada F., Tounsi A.D., Benrahou KH, Bedia, E.A.A. Mahmoud, S.R. and Tounsi, A. (2020), "Deflections, stresses and free vibration studies of FG-CNT reinforced sandwich plates resting on Pasternak elastic foundation", Comput. Concr., 25-26(3), 213-226. https://doi.org/10.12989/CAC.2020.26.3.213
  11. Bourada, F., Bousahla, A.A., Tounsi, A.D., Bedia, E.A. A, Mahmoud, S.R., Benrahou, K.H. and Tounsi, A. (2020), "Stability and dynamic analyses of SW-CNT reinforced concrete beam resting on elastic-foundation", Comput. Concr., 25(6), 485-495. https://doi.org/10.12989/cac.2020.25.6.485
  12. Balandin, A.A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F. and Lau, C.N. (2008), "Superior thermal conductivity of single-layer graphene", Nano Lett., 8, 902-907. https://doi.org/10.1021/nl0731872
  13. Banat, I.M., Nigam, P., Singh, D. and Marchant, R. (1996), "Microbial decolorization of textile-dyecontaining effluents: A review", Bioresour. Technol., 58, 217-227. https://doi.org/10.1016/S0960-8524(96)00113-7
  14. Chang, J.T., Lai, Y.F. and He, J.L. (2005), "Photocatalytic performance of chromium or nitrogen doped arc ion plated-TiO2 films", Surf. Coat. Technol., 200, 1640-1644. https://doi.org/10.1016/j.surfcoat.2005.08.118
  15. Cunha, D.L., Kuznetsov, A., Achete, C.A., da Hora Machado, A.E. and Marques, M. (2018), "Immobilized TiO2 on glass spheres applied to heterogeneous photocatalysis: Photoactivity, leaching and regeneration process", Peer J., 6, 4464. https://doi.org/10.7717/peerj.4464
  16. Dadvar, E., Kalantary, R.R., Ahmad Panahi, H. and Peyravi, M. (2017), "Efficiency of polymeric membrane graphene oxide-TiO2 for removal of azo dye", J. Chem., 2017, 1-13. https://doi.org/10.1155/2017/6217987
  17. El Haouzi, A., Belaasilia, Y. and Timesli, A. (2023), "Analytical modeling of buckling of carbon nanotubes reinforced sandwich-structured composite shells resting on elastic foundations", Iran J. Sci. Technol. Trans. Mech. Eng., 1-13. https://doi.org/10.1007/s40997-022-00582-1
  18. Foo, K.Y. and Hameed, B.H. (2010), "Decontamination of textile wastewater via TiO2/activated carbon composite materials", Adv. Colloid Interf. Sci., 159, 130-143. https://doi.org/10.1016/j.cis.2010.06.002
  19. Fujishima, A. and Honda, K. (1972), "Electrochemical photolysis of water at a semiconductor electrode", Nature, 238, 37-38. https://doi.org/10.1038/238037a0
  20. Frank, S.N. and Bard, A.J. (1977), "Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solutions at titanium dioxide powder", J. Am. Chem. Soc., 99, 303-304. https://doi.org/10.1021/ja00443a081
  21. Farre, M., Perez, S., Gajda-Schrantz, K., Osorio, V., Kantiani, L., Ginebreda, A. and Barcelo, D. (2010), "First determination of C60 and C70 fullerenes and N-methylfulleropyrrolidine C60 on the suspended material of wastewater effluents by liquid chromatography hybrid quadrupole linear ion trap tandem mass spectrometry", J. Hydrol., 383, 44-51. https://doi.org/10.1016/j.jhydrol.2009.08.016
  22. Goodeve, C.F. and Kitchener, J.A. (1938), "The mechanism of photosensitisation by solids", J. Chem. Soc. Faraday Trans., 34, 902-908. https://doi.org/10.1039/TF9383400902
  23. Gottschalk, F. and Nowack, B. (2011), "The release of engineered nanomaterials to the environment", J. Environ. Monit, 13, 1145-1155. https://doi.org/10.1039/C0EM00547A
  24. Heidari, F., Taheri, K., Sheybani, M., Janghorban, M. and Tounsi, A. (2021), "On the mechanics of nanocomposites reinforced by wavy/defected/aggregated nanotubes", Steel Compos. Struct., 38(5), 533-545. https://doi.org/10.12989/scs.2021.38.5.533
  25. Hashimoto, K., Irie, H., and Fujishima, A. (2005), "TiO2 photocatalysis: A historical overview and future prospects", Japan. J. Appl. Phys, 44, 8269. https://doi.org/10.1143/JJAP.44.8269
  26. Houas, A., Lachheb, H., Ksibi, M., Elaloui, E., Guillard, C. and Herrmann, J.M. (2001), "Photocatalytic degradation pathway of methylene blue in water", Appl. Catal. B, 31, 145-157. https://doi.org/10.1016/S0926-3373(00)00276-9
  27. Hummers, W.S. and Offeman, R.E. (1958), "Preparation of graphitic oxide", J. Am. Chem. Soc., 80, 1339-1339. https://doi.org/10.1021/ja01539a017
  28. Krishna, V., Noguchi, N., Koopman, B. and Moudgil, B. (2006), "Enhancement of titanium dioxide photocatalysis by water-soluble fullerenes", J. Colloid Interface Sci., 304, 166-171. https://doi.org/10.1016/j.jcis.2006.08.041
  29. Krishna, V., Yanes, D., Imaram, W., Angerhofer, A., Koopman, B. and Moudgil, B. (2008), "Mechanism of enhanced photocatalysis with polyhydroxy fullerenes", Appl. Catal. B, 79, 376-381. https://doi.org/10.1016/j.apcatb.2007.10.020
  30. Kalathil, S., Mansoob Khan, M., Ansari, S.A., Lee, J. and Cho, M.H. (2013), "Band gap narrowing of titanium dioxide (TiO2) nanocrystals by electrochemically active biofilms and their visible light activity", Nanoscale, 5, 6323-6326. https://doi.org/10.1039/C3NR01280H
  31. Khan, M.M., Ansari, S.A., Pradhan, D., Omaish Ansari, M., Han, D.H., Lee, J. and Cho, M.H. (2014), "Band gap engineered TiO2 nanoparticles for visible light induced photoelectron-chemical and photocatalytic studies", J. Mater. Chem. A., 2, 637-644. https://doi.org/10.1039/C3TA14052K
  32. Liang, Y.T., Vijayan, B.K., Lyandres, O., Gray, K.A. and Hersam, M.C. (2012), "Effect of dimensionality on the photocatalytic behavior of carbonetitania nanosheet composites: charge transfer at nanomaterial interfaces", J. Phys. Chem. Lett., 3, 1760-1765. https://doi.org/10.1021/jz300491s
  33. Lee, S.H., Pumprueg, S., Moudgil, B. and Sigmund, W. (2005), "Inactivation of bacterial endospores by photocatalytic nanocomposites", Colloids Surf. B, 40, 93-98. https://doi.org/10.1016/j.colsurfb.2004.05.005
  34. Lee, C., Wei, X., Kysar, J.W. and Hone, J. (2008), "Measurement of the elastic properties and intrinsic strength of monolayer graphene", Science, 321, 385-388. https://doi.org/10.1126/science.1157996
  35. Mallakpour, S., Abdolmaleki, A. and Borandeh, S. (2014), "Covalently functionalized graphene sheets with biocompatible natural amino acids", Appl. Surf. Sci., 307, 533-542. https://doi.org/10.1016/j.apsusc.2014.04.070
  36. Naciri, N., Farahi, A., Rafqah, S., Nasrellah, H., El Mhammedi, M. A., Lancar, I. and Bakasse, M. (2016) "Effective photocatalytic decolorization of indigo carmine dye in Moroccan natural phosphate-TiO2 aqueous suspensions", Opt. Mater., 52, 38-43. https://doi.org/10.1016/j.optmat.2015.12.011
  37. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D.E., Zhang, Y., Dubonos, S.V. and Firsov, A.A. (2004), "Electric field effect in atomically thin carbon films", Science, 306, 666-669. https://doi.org/10.1126/science.1102896
  38. Nguyen, K.D.V. and Vo, K.D.N. (2020), "Magnetite nanoparticles-TiO2 nanoparticles-graphene oxide nanocomposite: Synthesis, characterization and photocatalytic degradation for Rhodamine-B dye", AIMS Mater. Sci., 7, 288-301. https://doi.org/10.3934/matersci.2020.3.288
  39. Nair, R.R., Blake, P., Grigorenko, A.N., Novoselov, K.S., Booth, T.J., Stauber, T., MR Peres, N.M.R. and Geim, A.K. (2008), "Fine structure constant defines visual transparency of graphene", Science, 320, 1308-1309. https://doi.org/10.1126/science.1156965
  40. Stengl, V., Bakardjieva, S., Grygar, T.M., Bludska, J. and Kormunda, M. (2013), "TiO2-graphene oxide nanocomposite as advanced photocatalytic materials", Chem. Cent. J., 7, 1-12. https://doi.org/10.1186/1752-153X-7-41
  41. Serpone, N., Borgarello, E., Harris, R., Cahill, P., Borgarello, M. and Pelizzetti, E. (1986), "Photocatalysis over TiO2 supported on a glass substrate", Sol. Energy Mater., 14, 121-127. https://doi.org/10.1016/0165-1633(86)90070-5
  42. Sabate, J., Anderson, M.A., Aguado, M.A., Gimenez, J., Cervera-March, S. and Hill Jr, C.G. (1992), "Comparison of TiO2 powder suspensions and TiO2 ceramic membranes supported on glass as photocatalytic systems in the reduction of chromium (VI)", J. Mol. Catal., 71, 57-68. https://doi.org/10.1016/0304-5102(92)80007-4
  43. Safavi, B., Asadollahfardi, G. and Darban, A.K. (2017), "Cyanide removal simulation from wastewater in the presence of titanium dioxide nanoparticles", Adv. Nano Res., 5(1), 27-34. https://doi.org/10.12989/anr.2017.5.1.027
  44. Stoller, M.D., Park, S., Zhu, Y., An, J. and Ruoff, R.S. (2008), "Graphene-based ultracapacitors", Nano Lett., 8, 3498-3502. https://doi.org/10.1021/nl802558y
  45. Tu, W., Zhou, Y. and Zou, Z. (2013), "Versatile graphene-promoting photocatalytic performance of semiconductors: Basic principles, synthesis, solar energy conversion, and environmental applications", Adv. Funct. Mater., 23, 4996-5008. https://doi.org/10.1002/adfm.201203547
  46. Torimoto, T., Ito, S., Kuwabata, S. and Yoneyama, H. (1996), "Effects of adsorbents used as supports for titanium dioxide loading on photocatalytic degradation of propyzamide", Environ. Sci. Technol., 30, 1275-1281. https://doi.org/10.1021/es950483k
  47. Thiruvenkatachari, R., Vigneswaran, S. and Moon, I.S. (2008), "A review on UV/TiO2 photocatalytic oxidation process", Korean J. Chem. Eng., 25, 64-72. https://doi.org/10.1007/s11814-008-0011-8
  48. Timesli, A. (2020), "Buckling analysis of double walled carbon nanotubes embedded in Kerr elastic medium under axial compression using the nonlocal Donnell shell theory", Adv. Nano Res., 9(2), 69-82. https://doi.org/10.12989/anr.2020.9.2.069
  49. Timesli, A. (2021), "A cylindrical shell model for nonlocal buckling behavior of CNTs embedded in an elastic foundation under the simultaneous effects of magnetic field, temperature change, and number of walls", Adv. Nano Res., 11(6), 581-593. https://doi.org/10.12989/anr.2021.11.6.581
  50. Timesli, A. (2023), "Analytical modeling of buckling of carbon nanotubes reinforced sandwich-structured composite shells resting on elastic foundations", Gazi Univ. J. Sci, 36(4), 1700-1720. https://doi.org/10.35378/gujs.998265
  51. Tabatabaei, J. (2019), "The effect of TiO2 nanoparticles in reduction of environmental pollution in concrete structures", Adv. Concr. Constr., 7(2), 127-129. https://doi.org/10.12989/acc.2019.7.2.127
  52. Tabatabaei, J., Nourbakhsh, S.H. and Siahkar, M. (2019), "Mixture rule for studding the environmental pollution reduction in concrete structures containing nanoparticles", Coupled Syst. Mech., 9, 281-287. https://doi.org/10.12989/csm.2020.9.3.281
  53. Xu, Y. and Langford, C.H. (1995), "Enhanced photoactivity of a Titanium(IV) Oxide supported on ZSM5 and Zeolite A at low coverage", J. Phys. Chem., 99, 11501-11507. https://doi.org/10.1021/j100029a031
  54. Xia, Y., Cheng, B., Fan, J., Yu, J. and Liu, G. (2019), "Unraveling photoexcited charge transfer pathway and process of CdS/graphene nanoribbon composites toward visiblelight photocatalytic hydrogen evolution", Small, 15, 1902459. https://doi.org/10.1002/smll.201902459
  55. Zhao, J., Wu, T., Wu, K., Oikawa, K., Hidaka, H. and Serpone, N. (1998), "Photoassisted degradation of dye pollutants. 3. degradation of the cationic dye rhodamine B in aqueous anionic surfactant/TiO2 dispersions under visible light irradiation:  Evidence for the need of substrate adsorption on TiO2 particles", Environ. Sci. Technol., 32, 2394-2400. https://doi.org/10.1021/es9707926
  56. Zhang, G., Song, A., Duan, Y. and Zheng, S. (2018), "Enhanced photocatalytic activity of TiO2/zeolite composite for abatement of pollutants", Micropor. Mesopor. Mater., 255, 61-68. https://doi.org/10.1016/j.micromeso.2017.07.028
  57. Zhang, Q., Hou, Q., Huang, G. and Fan, Q. (2020), "Removal of heavy metals in aquatic environment by graphene oxide composites: A review", Environ. Sci. Pollut. Res., 27, 190-209. https://doi.org/10.1007/s11356-019-06683-w
  58. Zhang, H., Lv, X., Li, Y., Wang, Y. and Li, J. (2010), "P25-graphene composite as a high performance photocatalyst", ACS Nano., 4, 380-386. https://doi.org/10.1021/nn901221k
  59. Zerrouki, R., Karas, A., Zidour, M., Bousahla, A.A., Tounsi, A., Bourada, F., Tounsi, A.D, Benrahou, K.H. and Mahmoud, S.R. (2021), "Effect of nonlinear FG-CNT distribution on mechanical properties of functionally graded nano-composite beam", Struct. Eng. Mech., 78(2), 117-124. https://doi.org/10.12989/sem.2021.78.2.117