References
- Antunes, R.A., De Oliveira, M.C., Ett, G. and Ett, V. (2011), "Carbon materials in composite bipolar plates for polymer electrolyte membrane fuel cells: A review of the main challenges to improve electrical performance", J. Power Sources, 196(6), 2945-2961. https://doi.org/10.1016/j.jpowsour.2010.12.041
- Arani, A.G., Farazin, A. and Mohammadimehr, M. (2021), "The effect of nanoparticles on enhancement of the specific mechanical properties of the composite structures: A review research", Adv. Nano Res., 10(4), 327-337. https://doi.org/10.12989/anr.2021.10.4.327
- Barton, R., King, J. and Keith, J. (2006), "Development and modelling of electrically conductive carbon filled liquid crystal polymer composites for fuel cell bipolar plate applications", Proceedings of the Conference: The 6. International Symposium on New Materials for Electrochemical Systems, Montreal, Canada, July.
- Bourell, D., Leu, M.C., Chakravarthy, K., Guo, N. and Alayavalli, K. (2011), "Graphite-based indirect laser sintered fuel cell bipolar plates containing carbon fiber additions", CIRP Annals, 60(1), 275-278. https://doi.org/10.1016/j.cirp.2011.03.105
- Chen, S., Bourell, D.L. and Wood, K.L. (2004). "Fabrication of PEM fuel cell bipolar plates by indirect SLS", Proceedings of the 2004 International Solid Freeform Fabrication Symposium. http://doi.org/10.26153/tsw/6990
- Du, L. and Jana, S.C. (2008), "Hygrothermal effects on properties of highly conductive epoxy/graphite composites for applications as bipolar plates", J. Power Sources, 182(1), 223-229. https://doi.org/10.1016/j.jpowsour.2008.03.071
- Dweiri, R. and Sahari, J. (2007), "Computer simulation of electrical conductivity of graphite-based polypropylene composites based on digital image analysis", J. Mater. Sci., 42(24), 10098-10102. https://doi.org/10.1007/s10853-007-2092-x
- Feng, T., Liu, N., Wang, S., Qin, C., Shi, S., Zeng, X. and Liu, G. (2021), "Research on the dispersion of carbon nanotubes and their application in solution-processed polymeric matrix composites: A review", Adv. Nano Res., 10(6), 559-576. https://doi.org/10.12989/anr.2021.10.6.559
- Gholami, H., Shakeri, A. and Moosavi, S.H. (2015), "Preparation and properties investigation of conductive Polyaniline-Zinc Oxide nanocomposites", J. Sci. Technol. Compos, 2, 7-12.
- Gu, H., Zhang, H., Ma, C., Xu, X., Wang, Y., Wang, Z., Wei, R., Liu, H., Liu, C. and Shao, Q. (2019), "Trace electrosprayed nanopolystyrene facilitated dispersion of multiwalled carbon nanotubes: Simultaneously strengthening and toughening epoxy", Carbon, 142, 131-140. https://doi.org/10.1016/j.carbon.2018.10.029
- Guo, J., Chen, Z., Xu, X., Li, X., Liu, H., Xi, S., Abdul, W., Wu, Q., Zhang, P. and Xu, B.B. (2022), "Enhanced electromagnetic wave absorption of engineered epoxy nanocomposites with the assistance of polyaniline fillers", Adv. Compos. Hybrid Mater., 1-9. https://doi.org/10.1007/s42114-022-00417-2
- Guo, N. and Leu, M.C. (2012), "Effect of different graphite materials on the electrical conductivity and flexural strength of bipolar plates fabricated using selective laser sintering", Int. J. Hydrogen Energy, 37(4), 3558-3566. https://doi.org/10.1016/j.ijhydene.2011.11.058
- Hosseini, M. and Zandi Baghche Maryam, A. (2016), "Electromechanical response analysis of a rotating piezoelectric cylinder with functionally graded material under thermomagnetic fields", J. Sci. Technol. Compos., 3(1), 59-72.
- ASTM (American Society for Testing and Materials) (2015), ASTM D3171-15-Standard Test Methods for Constituent Content of Composite Materials, ASTM International West Conshohocken, Filadelfia, Pennsylvania, U.S.A.
- Jin, J., Lin, Y., Song, M., Gui, C. and Leesirisan, S. (2013), "Enhancing the electrical conductivity of polymer composites", Eur. Polym. J., 49(5), 1066-1072. https://doi.org/10.1016/j.eurpolymj.2013.01.014
- Johnson, B.A. (2009), "Thermally and electrically conductive polypropylene based resins for fuel cell bipolar plates", Doctoral dissertation, Michigan Technological University
- Kakati, B., Sathiyamoorthy, D. and Verma, A. (2010), "Electrochemical and mechanical behavior of carbon composite bipolar plate for fuel cell", Int. J. Hydrogen Energy, 35(9), 4185-4194. https://doi.org/10.1016/j.ijhydene.2010.02.033
- Karimi, M., Ghajar, R. and Montazeri, A. (2017), "Investigation of nanotubes' length and their agglomeration effects on the elastoplastic behavior of polymer-based nanocomposites", J. Sci. Technol. Compos., 4(2), 229-240.
- Kim, Y.J., Shin, T.S., Do Choi, H., Kwon, J.H., Chung, Y.-C. and Yoon, H.G. (2005), "Electrical conductivity of chemically modified multiwalled carbon nanotube/epoxy composites", Carbon, 43(1), 23-30. https://doi.org/10.1016/j.carbon.2004.08.015
- Letti, C.J., Costa, K.A., Gross, M.A., Paterno, L.G., Pereira-daSilva, M.A., Morais, P.C. and Soler, M.A. (2017), "Synthesis, morphology and electrochemical applications of iron oxide based nanocomposites", Adv. Nano Res., 5(3), 215. http://doi.org/10.12989/anr.2017.5.3.215
- Liao, S.H., Hsiao, M.C., Yen, C.Y., Ma, C.C.M., Lee, S.J., Su, A., Tsai, M.C., Yen, M.Y. and Liu, P.L. (2010), "Novel functionalized carbon nanotubes as cross-links reinforced vinyl ester/nanocomposite bipolar plates for polymer electrolyte membrane fuel cells", J. Power Sources, 195(23), 7808-7817. https://doi.org/10.1016/j.jpowsour.2009.10.020
- Liao, S.H., Hung, C.H., Ma, C.C.M., Yen, C.Y., Lin, Y.-F. and Weng, C.C. (2008), "Preparation and properties of carbon nanotube-reinforced vinyl ester/nanocomposite bipolar plates for polymer electrolyte membrane fuel cells", J. Power Sources, 176(1), 175-182. https://doi.org/10.1016/j.jpowsour.2007.10.064
- Luo, X., Yang, G. and Schubert, D.W. (2022), "Electrically conductive polymer composite containing hybrid graphene nanoplatelets and carbon nanotubes: Synergistic effect and tunable conductivity anisotropy", Adv. Compos. Hybrid Mater., 5(1), 250-262. https://doi.org/10.1007/s42114-021-00332-y
- Mighri, F., Huneault, M.A. and Champagne, M.F. (2004), "Electrically conductive thermoplastic blends for injection and compression molding of bipolar plates in the fuel cell application", Polym. Eng. Sci., 44(9), 1755-1765. https://doi.org/10.1002/pen.20177
- Modarresi-Alam, A.R., Soleimani, M., Pakseresht, M., FarzanehJobaneh, E., Zeraatkar, V., Tabatabaei, F.A., Shabzendedar, S. and Movahedifar, F. (2016), "Preparation of new conductive nanocomposites of polyaniline and silica under solid-state condition", Polym. Int, 29, 387-398.
- Osman, A., Elhakeem, A., Kaytbay, S. and Ahmed, A. (2022), "A comprehensive review on the thermal, electrical, and mechanical properties of graphene-based multi-functional epoxy composites", Adv. Compos. Hybrid Mater., 1-59. https://doi.org/10.1007/s42114-022-00423-4
- Pan, Y.X., Yu, Z.Z., Ou, Y.C. and Hu, G.H. (2000), "A new process of fabricating electrically conducting nylon 6/graphite nanocomposites via intercalation polymerization", J. Polym. Sci. Part B Polym. Phys., 38(12), 1626-1633. https://doi.org/10.1002/(SICI)10990488(20000615)38:12<1626::AID-POLB80>3.0.CO,2-R
- Park, S.M., Jung, D.H., Kim, S.K., Lim, S., Peck, D. and Hong, W.H. (2009), "The effect of vapor-grown carbon fiber as an additive to the catalyst layer on the performance of a direct methanol fuel cell", Electrochimica Acta, 54(11), 3066-3072. https://doi.org/10.1016/j.electacta.2008.11.066
- Razavi, M., Ghomi, M.T., Taheri-Behrooz, F. and Liaghat, G. (2019), "Effect of bending load on the electrical conductivity of carbon/epoxy composites filled with nanoparticles", Iran. J. Polym. Sci. Technol., 32, 79-92.
- Razavi, S.M., Sadollah, A. and Al-Shamiri, A.K. (2022), "Prediction and optimization of electrical conductivity for polymer-based composites using design of experiment and artificial neural networks", Neural Comput. Appl., 34(10), 7653-7671. https://doi.org/10.1007/s00521-021-06798-7
- Rhodes, S.M., Higgins, B., Xu, Y. and Brittain, W.J. (2007), "Hyperbranched polyol/carbon nanofiber composites", Polymer, 48(6), 1500-1509. https://doi.org/10.1016/j.polymer.2007.01.038
- Shen, C.H., Mu, P. and Yuan, R.Z. (2006), "Sodium silicate/graphite conductive composite bipolar plates for proton exchange membrane fuel cells", J. Power Sourc., 162(1), 460-463. https://doi.org/10.1016/j.jpowsour.2006.06.095
- Shokrieh, M.M., Esmkhani, M., Vahedi, F. and Shahverdi, H.R. (2013), "Improvement of mechanical and electrical properties of epoxy resin with carbon nanofibers", Iran. Polym. J., 22(10), 721-727. https://doi.org/10.1007/s13726-013-0170-2
- Sun, L., Cui, R., Jalbout, A., Li, M., Pan, X., Wang, R. and Xie, H. (2009), "LiFePO4 as an optimum power cell material", J. Power Sources, 189(1), 522-526. https://doi.org/10.1016/j.jpowsour.2008.10.120
- Tabatabaee, M., Taheri-Behrooz, F., Razavi, S.M. and Liaghat, G.H. (2019), "Electrical conductivity enhancement of Carbon/Epoxy composites using nanoparticles", J. Sci. Technol. Compos., 5(4), 605-614.
- Taherian, R., Golikand, A.N. and Hadianfard, M.J. (2011), "The effect of mold pressing pressure and composition on properties of nanocomposite bipolar plate for proton exchange membrane fuel cell", Mater. Des., 32(7), 3883-3892. https://doi.org/10.1016/j.matdes.2011.02.059
- Taherian, R., Hadianfard, M.J. and Golikand, A.N. (2013), "Manufacture of a polymer-based carbon nanocomposite as bipolar plate of proton exchange membrane fuel cells", Mater. Des., 49, 242-251. https://doi.org/10.1016/j.matdes.2013.01.058
- Testing, A.S.F. and Materials (2015), "Standard test method for flexural properties of polymer matrix composite materials", ASTM D7264.
- Wafers, S. (2003), "Sheet resistance of thin metallic films with a collinear four-probe array 1", Measurement, 98, 1-4.
- Wang, Y. (2006), Conductive thermoplastic composite blends for flow field plates for use in polymer electrolyte membrane fuel cells (PEMFC), Master's thesis, University of Waterloo, Waterloo, Canada.
- Xu, X., Yao, F., Ali, O.A.A., Xie, W., Mahmoud, S.F., Xie, P., ElBahy, S.M., Huang, M., Liu, C. and Fan, R. (2022), "Adjustable core-sheath architecture of polyaniline-decorated hollow carbon nanofiber nanocomposites with negative permittivity for superb electromagnetic interference shielding", Adv. Compos. Hybrid Mater., 5(3), 2002-2011. https://doi.org/10.1007/s42114-022-00538-8
- Yogeswaran, U. and Chen, S.M. (2008), "Multi-walled carbon nanotubes with poly (methylene blue) composite film for the enhancement and separation of electroanalytical responses of catecholamine and ascorbic acid", Sensors Actuat. B Chem., 130(2), 739-749. https://doi.org/10.1016/j.snb.2007.10.040