DOI QR코드

DOI QR Code

Biodegradable Polylactic Acid Foams Modified by the Blending of Cellulose Acetate Butyrate

Cellulose Acetate Butyrate를 블렌드하여 개질한 생분해성 Polylactic Acid 발포체

  • Jeong-Hwan Kim (Department of Materials Design Engineering, Kumoh National Institute of Technology) ;
  • Dong-Jin Kim (Department of Materials Design Engineering, Kumoh National Institute of Technology) ;
  • Hyeji Kim (Department of Materials Design Engineering, Kumoh National Institute of Technology) ;
  • Minsu Park (Department of Materials Design Engineering, Kumoh National Institute of Technology) ;
  • Ji-Yun Baek (Department of Materials Design Engineering, Kumoh National Institute of Technology) ;
  • Jinho Jang (Department of Materials Design Engineering, Kumoh National Institute of Technology)
  • 김정환 (금오공과대학교 소재디자인공학과) ;
  • 김동진 (금오공과대학교 소재디자인공학과) ;
  • 김혜지 (금오공과대학교 소재디자인공학과) ;
  • 박민수 (금오공과대학교 소재디자인공학과) ;
  • 백지윤 (금오공과대학교 소재디자인공학과) ;
  • 장진호 (금오공과대학교 소재디자인공학과)
  • Received : 2023.08.16
  • Accepted : 2023.10.18
  • Published : 2023.10.31

Abstract

The expanded polystyrene foams, often termed Styrofoam, are not biodegradable and susceptible to photo-oxidation in the ocean contributing to microplastic marine debris, resulting in a global ban as a single use plastic. As an eco-friendly polymer foam, Poly(lactic acid) and PLA/cellulose acetate butyrate (CAB) blends were foamed using an twin-screw extruder with azodicarbonamide (ADCA) as a chemical blowing agent. When cellulose acetate butyrate (CAB) was blended to modify the low melt strength of PLA, the PLA/CAB blend showed outstanding miscibility indicated by the loss of each melting peaks suggesting the amorphous nature of the blends. The foam density of PLA blend decreased from 1.20 g/cm3 to 0.63 g/cm3 with increasing CAB concentration at the adjusted ADCA concentration and extrusion temperature. The CAB blending ratio of 50:50 with 2% ADCA may enhance the foaming capability of PLA through the stabilization of the foam cell structures both by increasing melt viscosity and miscibility, as well as by the higher nonpolar surface energy of CAB compared to PLA.

Keywords

Acknowledgement

이 연구는 금오공과대학교 대학 연구과제비로 지원되었음(2022~2024).

References

  1. R. Mort, K. Vorst, G. Curtzwiler, and S. Jiang, "Biobased Foams for Thermal Insulation: Material Selection, Processing, Modelling, and Performance", RSC Adv., 2021, 11, 4375-4394. https://doi.org/10.1039/D0RA09287H
  2. K. Zhang, A. Mohanty, and M. Misra, "Fully Biodegradable and Bio renewable Ternary Blends from Polylactide, Poly(3-hydroxybutyrate-co-hydroxyvalerate) and Poly(butylene succinate) with Balanced Properties", ACS Appl. Mater. Interfaces, 2012, 4, 3091-3101. https://doi.org/10.1021/am3004522
  3. R. Lee, Y. Guo, H. Tamber, M. Planeta, and S. Leung, "Thermoforming of Polylactic Acid Foam Sheets: Crystallization Behaviors and Thermal Stability", Ind. Eng. Chem. Res., 2016, 55, 560-567. https://doi.org/10.1021/acs.iecr.5b03473
  4. L. Lim, R. Auras, and M. Rubino, "Processing Technologies for Poly(lactic acid)", Prog. Polym. Sci., 2008, 33, 820-852. https://doi.org/10.1016/j.progpolymsci.2008.05.004
  5. M. Nofar and C. B. Park, "Poly(lactic acid) Foaming", Prog. Polym. Sci., 2014, 39, 1721-1741. https://doi.org/10.1016/j.progpolymsci.2014.04.001
  6. Kmetty, K. Litauszki, and D. Reti, "Characterization of Different Chemical Blowing Agents and Their Applicability to Produce Poly(lactic acid) Foams by Extrusion", Appl. Sci., 2018, 8, 1960-1976. https://doi.org/10.3390/app8101960
  7. H. Simmons, P. Tiwary, J. E. Colwell, and M. Kontopoulou, "Improvements in the Crystallinity and Mechanical Properties of PLA by Nucleation and Annealing", Polym. Degrad. Stabil., 2019, 166, 248-257. https://doi.org/10.1016/j.polymdegradstab.2019.06.001
  8. T. Standau, C. Zhao, S. M. Castellon, C. Bonten, and V. Altstadt, "Chemical Modification and Foam Processing of Polylactide (PLA)", Polymers, 2019, 11, 1-39. https://doi.org/10.3390/polym11020306
  9. W. D. Ding, D. Jahani, E. Chang, A. Alemdar, C. B. Park, and M. Sainc, "Development of PLA/Cellulosic Fiber Composite Foams using Injection Molding: Crystallization and Foaming Behaviors", Composites: Part A, 2016, 83, 130-139. https://doi.org/10.1016/j.compositesa.2015.10.003
  10. T. Kim, E. Ko, J. Ahn, S. Park, S. Pak, M. Kim, and H. Kim, "Rheological Behavior of Polylactic Acid Solution and Physical Properties of Resulting Film Using Cellulose Nanocrystals", Text. Sci. Eng., 2020, 57, 347-353.
  11. N. A. A. Hassan, S. Ahmad, R. S. Chen, F. D. Zailan, and D. Shahdan, "Effect of Processing Temperature and Foaming Agent Loading on Properties of Polylactic Acid/Kenaf Fiber Composite Foam", Materials Today: Proceedings, 2019, 7, 601-606. https://doi.org/10.1016/j.matpr.2018.12.013
  12. J. Kuang, J. H. Wang, and Y. B. Yingcheng, "Effects and Mechanism of Cellulose Acetate Butyrate on the Crystallization of Polylactic acid", Eur. Polym. J., 2019, 121, 1-10. https://doi.org/10.1016/j.eurpolymj.2019.109286
  13. B. U. Nam, K. D. Min, and Y. Son, "Investigation of the Nanostructure, Thermal Stability, and Mechanical Properties of Polylactic Acid/Cellulose Acetate Butyrate/Clay Nanocomposites", Mater. Lett., 2015, 150, 118-121. https://doi.org/10.1016/j.matlet.2015.03.019
  14. B. Li, G. Zhao, G. Wang, L. Zhang, J. Gong, and Z. Shi, "Biodegradable PLA/PBS Open Cell Foam Fabricated by Supercritical CO2 Foaming for Selective Oil Adsorption", Sep. Purif. Technol., 2021, 257, 1-11. https://doi.org/10.1016/j.seppur.2020.117949
  15. P. Gong, S. Zhai, R. Lee, C. Zhao, P. Buahom, G. Li, and C. B. Park, "Environmentally Friendly Polylactic Acid Based Thermal Insulation Foams Blown with Supercritical CO2", Ind. Eng. Chem. Res., 2018, 57, 5464-5471. https://doi.org/10.1021/acs.iecr.7b05023
  16. K. Litauszki and A. Kmetty, "Production of Biopolymer Foams Based on Polylactic Acid Plasticized with Lactic Acid Oligomer", Acta Materialia Transylvanica, 2021, 4, 32-37. https://doi.org/10.33924/amt-2021-01-06
  17. T. Standau, S. M. Castellon, A. Delavoie, C. Bonten, and V. Altstadt, "Effects of Chemical Modifications on the Rheological and the Expansion Behavior of Polylactide (PLA) in Foam Extrusion", e-Polymers, 2019, 19, 297-304. https://doi.org/10.1515/epoly-2019-0030
  18. C. J. Van Oss, R. J. Good, and M. K. Chaudhury, "Additive and Nonadditive Surface Tension Components and the Interpretation of Contact Angles", Langmuir, 1988, 4, 884-891. https://doi.org/10.1021/la00082a018
  19. Z. M. Xua, X. L. Jiang, T. Liu, G. H. Hu, L. Zhao, Z. N. Zhu, and W. K. Yuan, "Foaming of Polypropylene with Supercritical Carbon Dioxide", J. Supercritical Fluids, 2007, 41, 299-310. https://doi.org/10.1016/j.supflu.2006.09.007