DOI QR코드

DOI QR Code

Damage identification in a wrought iron railway bridge using the inverse analysis of the static stress response under rail traffic loading

  • Sidali Iglouli (Civil Engineering Department, Faculty of Technology, Tlemcen University) ;
  • Nadir Boumechra (Civil Engineering Department, Faculty of Technology, Tlemcen University) ;
  • Karim Hamdaoui (Civil Engineering Department, Faculty of Technology, Tlemcen University)
  • 투고 : 2022.12.20
  • 심사 : 2023.03.03
  • 발행 : 2023.09.25

초록

Health monitoring of civil infrastructures, in particular, old bridges that are still in service, has become more than necessary, given the risk that a possible degradation or failure of these infrastructures can induce on the safety of users in addition to the resulting commercial and economic impact. Bridge integrity assessment has attracted significant research efforts over the past forty years with the aim of developing new damage identification methods applicable to real structures. The bridge of Ouled Mimoun (Tlemcen, Algeria) is one of the oldest railway structure in the country. It was built in 1889. This bridge, which is too low with respect to the level of the road, has suffered multiple shocks from various machines that caused considerable damage to its central part. The present work aims to analyze the stability of this bridge by identifying damages and evaluating the damage rate in different parts of the structure on the basis of a finite element model. The applied method is based on an inverse analysis of the normal stress responses that were calculated from the corresponding recorded strains, during the passage of a real train, by means of a set of strain gauges placed on certain elements of the bridge. The results obtained from the inverse analysis made it possible to successfully locate areas that were really damaged and to estimate the damage rate. These results were also used to detect an excessive rigidity in certain elements due to the presence of plates, which were neglected in the numerical reference model. In the case of the continuous bridge monitoring, this developed method will be a very powerful tool as a smart health monitoring system, allowing engineers to take in time decisions in the event of bridge damage.

키워드

참고문헌

  1. Abdo, M.A.B. (2012), "Parametric study of using only static response in structural damage detection", Eng. Struct., 34, 124-31. https://doi.org/10.1016/j.engstruct.2011.09.027 
  2. An, Y., Li, B. and Ou, J. (2013), "An algorithm for damage localization in steel truss structures: numerical simulation and experimental validation", J. Intell. Mater. Syst. Struct., 24(14), 1683-1698. https://doi.org/10.1177/1045389x13483027 
  3. An, Y., Ou, J.P., Li, J. and Spencer, B.F. (2014), "Stochastic DLV method for steel truss structures: simulation and experiment", Smart Struct. Syst., Int. J., 14(2), 105-128. https://doi.org/10.12989/sss.2014.14.2.105 
  4. An, Y., Chatzi, E., Sim, S.H., Laflamme, S., Blachowski, B. and Ou, J. (2019), "Recent progress and future trends on damage identification methods for bridge structures", Struct. Control Health Monit., 26(10). https://doi.org/10.1002/stc.2416 
  5. Avci, O., Abdeljaber, O., Kiranyaz, S., Hussein, M., Gabbouj, M. and Inman, D.J. (2021), "A review of vibration-based damage detection in civil structures: from traditional methods to machine learning and deep learning applications", Mech. Syst. Signal Process., 147. https://doi.org/10.1016/j.ymssp.2020.107077 
  6. Bakhtiari-Nejad, F., Rahai, A. and Esfandiari, A. (2005), "A structural damage detection method using static noisy data", Eng. Struct., 27, 1784-1793. https://doi.org/10.1016/j.engstruct.2005.04.019 
  7. Bao, Y., Li, H., An, Y. and Ou, J. (2012), "Dempster-Shafer evidence theory approach to structural damage detection", Struct. Health Monitor., 11(1), 13-26. https://doi.org/10.1177/1475921710395813 
  8. Barthorpe, R.J. (2010), "On model and data based approaches to structural health monitoring", Ph.D. Dissertation; University of Sheffield, UK.
  9. Behmanesh, I. and Moaveni, B. (2015), "Probabilistic identification of simulated damage on the dowling hall footbridge through bayesian finite element model updating", Struct. Control Health Monitor., 22(3), 463-483. https://doi.org/10.1002/stc.1684 
  10. Blachowski, B., An, Y., Spencer, B.F. and Ou, J. (2017), "Axial strain accelerations approach for damage localization in statically determinate truss structures", Comput.-Aided Civil Infrastruct. Eng., 32(4), 304-318. https://doi.org/10.1111/mice.12258 
  11. Boukezzi, L., Benaissa, A., Lehbab-Boukezzi, Z. and Nasser, B. (2021), "Assessment of existing steel railway bridges, algeria", Eur. J. Environ. Civil Eng, 25(1), 117-131. https://doi.org/10.1080/19648189.2018.1518792 
  12. Boumechra, N. (2017), "Damage detection in beam and truss structures by the inverse analysis of the static response due to moving loads", Struct. Control Health Monit., 24(10). https://doi.org/10.1002/stc.1972 
  13. Boumechra, N. and Hamdaoui, K. (2008), "Dynamic and Fatigue Analysis of an 18th Century Steel Arch Bridge", AIP Conference Proceedings 1020 (PART 1), Calabria, July.
  14. Brownjohn, J.M. (2007), "Structural health monitoring of civil infrastructure", Phil. Trans. R. Soc. A, 365(1851), 589-622. https://doi.org/10.1098/rsta.2006.1925 
  15. Brownjohn, J.M., De Stefano, A., Xu, Y.L., Wenzel, H. and Aktan, A.E. (2011), "Vibration-based monitoring of civil infrastructure: challenges and successes", J. Civil Struct. Health Monitor., 1(3-4), 79-95. https://doi.org/10.1007/s13349-011-0009-5 
  16. Chang, K.C. and Kim, C.W. (2016), "Modal-parameter identification and vibration-based damage detection of a damaged steel truss bridge", Eng. Struct., 122(2), 156-173. https://doi.org/10.1016/j.engstruct.2016.04.057 
  17. Chen, H.P. (2018), Structural Health Monitoring of Large Civil Engineering Structures, Wiley-Blackwell, London, UK.
  18. Chen, Z.W., Zhu, S., Xu, Y.L., Li, Q. and Cai, Q.L. (2015), "Damage detection in long suspension bridges using stress influence lines", J. Bridge Eng., 20(3), 5014013. https://doi.org/10.1061/(asce)be.1943-5592.0000681
  19. Fan, W. and Qiao, P. (2011), "Vibration-based damage identification methods: a review and comparative study", Struct. Health Monitor., 10(1), 83-111. https://doi.org/10.1177/1475921710365419 
  20. Fan, X., Li, J. and Hao, H. (2016), "Piezoelectric impedance based damage detection in truss bridges based on time frequency ARMA model", Smart Struct. Syst., Int. J., 18(3), 501-523. https://doi.org/10.12989/sss.2016.18.3.501 
  21. Farrar, C.R. and Worden, K. (2007), "An introduction to structural health monitoring", Phil. Trans. R. Soc. A, 365(1851), 303-315. https://doi.org/10.1098/rsta.2006.1928 
  22. Friswell, M.I. (2007), "Damage identification using inverse methods", Phil. Trans. R. Soc. A, 365(1851), 393-410. https://doi.org/10.1098/rsta.2006.1930 
  23. Goi, Y. and Kim, C.W. (2017), "Damage detection of a truss bridge utilizing a damage indicator from multivariate autoregressive model", J. Civil Struct. Health Monitor., 7(2), 153-162. https://doi.org/10.1007/s13349-017-0222-y 
  24. Grandic, I.S. and Grandic, D. (2017), "Estimation of damage severity using sparse static measurement", J. Civil Eng. Manage, 23(2), 213-221. https://doi.org/10.3846/13923730.2015.1027256 
  25. Hoffmann, K. (2012), An Introduction to Stress Analysis and Transducer Design Using Strain Gauges. 
  26. Iglouli, S., Boumechra, N. and Hamdaoui, K. (2018), "Damage or change detection in a small scale model of steel bridge deck under static loading by extensometery", Iop Conference Series: Materials Science and Engineering, Prague, September.
  27. Keil, S. (2017), Technology and Practical Use of Strain Gages, (1st edition), Ernst & Sohn, Germany. 
  28. Kim, C.W., Chang, K.C., Kitauchi, S. and McGetrick, P.J. (2016), "A field experiment on a steel gerber-truss bridge for damage detection utilizing vehicle-induced vibrations", Struct. Health Monitor., 15(2), 174-192. https://doi.org/10.1177/1475921715627506 
  29. Ko, J.M. and Ni, Y.Q. (2005), "Technology developments in structural health monitoring of large-scale bridges", Eng. Struct., 27, 1715-1725. https://doi.org/10.1016/j.engstruct.2005.02.021 
  30. Le, N.T., Thambiratnam, D.P., Nguyen, A. and Chan, T.H.T. (2019), "A new method for locating and quantifying damage in beams from static deflection changes", Eng. Struct., 180, 779-792. https://doi.org/10.1016/j.engstruct.2018.11.071 
  31. Lee, E.T. and Eun, H.C. (2019), "Disassembling-based structural damage detection using static measurement data", Shock Vib., 2019. https://doi.org/10.1155/2019/6073828 
  32. Lee, S.G., Yun, G., Rahimi, M.R. and Shang, S. (2014), "Experimental validation of multistep quantitative crack damage assessment for truss structures by finite element model updating", Smart Mater. Struct., 23(12). https://doi.org/10.1088/0964-1726/23/12/125034 
  33. Liu, Y. and Zhang, S. (2018), "Damage localization of beam bridges using quasi-static strain influence lines based on the botda technique", Sensors, 18(12). https://doi.org/10.3390/s18124446 
  34. Moughty, J.J. and Casas, J.R. (2017), "A state of the art review of modal-based damage detection in bridges: development, challenges, and solutions", Appl. Sci., 7(5). https://doi.org/10.3390/app7050510 
  35. Mustafa, S. and Matsumoto, Y. (2017), "Bayesian model updating and its limitations for detecting local damage of an existing truss bridge", J. Bridge Eng., 22(7), 4017019. https://doi.org/10.1061/(asce)be.1943-5592.0001044 
  36. Mustafa, S., Debnath, N. and Dutta, A. (2015), "Bayesian probabilistic approach for model updating and damage detection for a large truss bridge", Int. J. Steel Struct., 15(2), 473-485. https://doi.org/10.1007/s13296-015-6016-3 
  37. Nagarajaiah, S. and Erazo, K. (2016), "Structural monitoring and identification of civil infrastructure in the united states", Struct. Monitor. Maint., Int. J., 3(1), 51-69. https://doi.org/10.12989/smm.2016.3.1.051 
  38. Nguyen, D.H., Tran-Ngoc, H., Bui-Tien, T., De Roeck, G. and Wahab, M.A. (2020), "Damage detection in truss bridges using transmissibility and machine learning algorithm: Application to Nam O bridge", Smart Struct. Syst., Int. J., 26(1), 35-47. https://doi.org/10.12989/sss.2020.26.1.035 
  39. Nuno, K. (2013), "Damage detection of a steel truss bridge using frequency response function curvature method", KTH Royal Institute of Technology, TRITA-BKN Rapport. 
  40. Obrien, E., Carey, C. and Keenahan, J. (2015), "Bridge damage detection using ambient traffic and moving force identification", Struct. Control Health Monitor., 22(12), 1396-1407. https://doi.org/10.1002/stc.1749 
  41. Phares, B.M., Washer, G.A., Rolander, D.D., Graybeal, B.A. and Moore, M. (2004), "Routine highway bridge inspection condition documentation accuracy and reliability", J. Bridge Eng., 9(4), 403-413. https://doi.org/10.1061/(asce)1084-0702(2004)9:4(403) 
  42. Rytter, A. (1993), "Vibrational based inspection of civil engineering structures", Ph.D. Dissertation; University of Alborg, Denmark. 
  43. Seyedpoor, S.M. and Yazdanpanah, O. (2014), "An efficient indicator for structural damage localization using the change of strain energy based on static noisy data", Appl. Mathe. Modell., 38(9-10), 2661-2672. https://doi.org/10.1016/j.apm.2013.10.072 
  44. Sohn, H., Farrar, C.R., Hunter, N.F. and Worden, K. (2001), "Structural health monitoring using statistical pattern recognition techniques", J. Dyn. Syst. Meas. Control, 123(4), 706-711. https://doi.org/10.1115/1.1410933 
  45. Sun, L., Shang, Z., Xia, Y., Bhowmick, S., Nagarajaiah, S. (2020), "Review of bridge structural health monitoring aided by big data and artificial intelligence: from condition assessment to damage detection", J. Struct. Eng., 146(5), 4020073. https://doi.org/10.1061/(asce)st.1943-541x.0002535 
  46. Svendsen, B.T., Froseth, G.T. and Ronnquist, A. (2020), "Damage detection applied to a full-scale steel bridge using temporal moments", Shock Vib., 1-16. https://doi.org/10.1155/2020/3083752 
  47. Svendsen, B.T., Froseth, G.T., Oiseth, O. and Ronnquist, A. (2022), "A data-based structural health monitoring approach for damage detection in steel bridges using experimental data", J. Civil Struct. Health Monit., 12(1), 101-115. https://doi.org/10.1007/s13349-021-00530-8 
  48. Terlaje, A.S. and Truman, K.Z. (2007), "Parameter identification and damage detection using structural optimization and static response data", Adv. Struct. Eng., 10(6), 607-621. https://doi.org/10.1260/136943307783571409 
  49. Wang, F.L., Chan, T.H.T., Thambiratnam, D.P. and Tan, A.C.C. (2013), "Damage diagnosis for complex steel truss bridges using multi-layer genetic algorithm", J. Civil Struct. Health Monitor., 3(2), 117-127. https://doi.org/10.1007/s13349-013-0041-8 
  50. Yazdanpanah, O., Izadifard, R.A. and Dehestani, M. (2020), "Static data based damage localization of beam-column structures considering axial load", Mech. Adv. Mater. Struct., 27(16), 1433-1450. https://doi.org/10.1080/15376494.2018.1513612 
  51. Yu, L. and Zhu, J.H. (2017), "Structural damage prognosis on truss bridges with end connector bolts", J. Eng. Mech., 143(3). https://doi.org/10.1061/(asce)em.1943-7889.0001052 
  52. Zhang, S. and Liu, Y. (2019), "Damage detection in beam bridges using quasi-static displacement influence lines", Appl. Sci., 9(9), 1805. https://doi.org/10.3390/app9091805