Acknowledgement
The study presented in this article was partially supported by the National Natural Science Foundation of China (Grant No. 51208419) and the Fundamental Research Funds for Central Universities of China (Grant No. 2682021CX009).
References
- Alipour, M., Harris, D.K. and Miller, G.R. (2019), "Robust pixel-level crack detection using deep fully convolutional neural networks", J. Comput. Civil Eng., 33(6), 04019040. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000854
- Asadi, P., Mehrabi, H., Asadi, A. and Ahmadi, M. (2021), "Deep convolutional neural networks for pavement crack detection using an inexpensive global shutter RGB-D sensor and ARM-based single-board computer", Transport. Res. Record, 2675(9) 03611981211004974. https://doi.org/10.1177/03611981211004974
- Badrinarayanan, V., Handa, A. and Cipolla, R. (2015), "SegNet: A deep convolutional encoder-decoder architecture for robust semantic pixel-wise labelling", arXiv preprint arXiv:1505.07293. https://doi.org/10.48550/arXiv.1505.07293
- Bang, S., Park, S., Kim, H. and Kim, H. (2019), "Encoder-decoder network for pixel-level road crack detection in blackbox images", Comput.-Aided Civil Infrastr. Eng., 34(8), 713-727. https://doi.org/10.1111/mice.12440
- Carre, A., Klausner, G., Edjlali, M., Lerousseau, M., Briend-Diop, J., Sun, R., Ammari, S., Reuze, S., Alvarez Andres, E., Estienne, T. and Niyoteka, S. (2020), "Standardization of brain MR images across machines and protocols: bridging the gap for MRI-based radiomics", Scientific Reports, 10(1), 12340.
- Cha, Y.J., Choi, W. and Buyukozturk, O. (2017), "Deep learning-based crack damage detection using convolutional neural networks", Comput.-Aided Civil Infrastr. Eng., 32(5), 361-378. https://doi.org/10.1111/mice.12263
- Cha, Y.J., Choi, W., Suh, G., Mahmoudkhani, S. and Buyukozturk, O. (2018), "Autonomous structural visual inspection using region-based deep learning for detecting multiple damage types", Comput.-Aided Civil Infrastr. Eng., 33(9), 731-747. https://doi.org/10.1111/mice.12334
- Daniel, A. and Preeja, V. (2014), "A novel technique for automatic road distress detection and analysis", Int. J. Comput. Applicat., 101(10), 18-23. https://doi.org/10.5120/17723-8018
- Doshi, K. and Yasin, Y. (2020), "Road damage detection using deep ensemble learning", In: 2020 IEEE International Conference on Big Data (Big Data), Atlanta, GA, USA, December.
- Du, Y., Pan, N., Xu, Z., Deng, F., Shen, Y. and Kang, H. (2020), "Pavement distress detection and classification based on YOLO network", Int. J. Pave. Eng., 22(13), 1659-1672. https://doi.org/10.1080/10298436.2020.1714047
- Escalona, U., Arce, F., Zamora, E. and Sossa, H. (2019), "Fully convolutional networks for automatic pavement crack segmentation", Computacion y Sistemas, 23(2), 451-460. https://doi.org/10.13053/cys-23-2-3047
- Fawcett, T. (2006), "An introduction to ROC analysis", Pattern Recogn. Lett., 27(8), 861-874. https://doi.org/10.1016/j.patrec.2005.10.010
- Fei, Y., Wang, K.C.P., Zhang, A., Chen, C., Li, J.Q., Liu, Y., Yang, G. and Li, B. (2019), "Pixel-level cracking detection on 3D asphalt pavement images through deep-learning-based CrackNet-V", IEEE Transact. Intell. Transport. Syst., 21(1), 273-284. https://ieeexplore.ieee.org/document/8620557
- Feng, X., Xiao, L., Li, W., Pei, L., Sun, Z., Ma, Z., Shen, H. and Ju, H. (2020), "Pavement crack detection and segmentation method based on improved deep learning fusion model", Mathe. Problems Eng., 2020. https://doi.org/10.1155/2020/8515213
- Gao, Y., Zhai, P. and Mosalam, K.M. (2021), "Balanced semisupervised generative adversarial network for damage assessment from low-data imbalanced-class regime", Comput.-Aided Civil Infrastr. Eng., 36(9), 1094-1113. https://doi.org/10.1111/mice.12741
- Glorot, X. and Bengio, Y. (2010), "Understanding the difficulty of training deep feedforward neural networks", Proceedings of the 13th International Conference on Artificial Intelligence and Statistics, Sardinia, Italy, May.
- Gou, C., Peng, B., Li, T. and Gao, Z. (2019), "Pavement Crack Detection Based on the Improved Faster-RCNN", Proceedings of 2019 IEEE 14th International Conference on Intelligent Systems and Knowledge Engineering (ISKE), Dalian, China, November.
- Guo, C., Fan, B., Zhang, Q., Xiang, S. and Pan, C. (2019), "AugFPN: improving multi-scale feature learning for object detection", Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CA, USA, June.
- He, K., Zhang, X., Ren, S. and Sun, J. (2015), "Deep residual learning for image recognition", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, June.
- Hsieh, Y.A. and Tsai, Y.J. (2020), "Machine learning for crack detection: review and model performance comparison", J. Comput. Civil Eng., 34(5), 04020038. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000918
- Hwang, J.J. and Liu, T.L. (2015), "Pixel-wise deep learning for contour detection", arXiv preprint arXiv:1504.01989. https://doi.org/10.48550/arXiv.1504.01989
- Iandola, F.N., Moskewicz, M.W., Ashraf, K., Han, S., Dally, W.J. and Keutzer, K. (2016), "Squeezenet: Alexnet-level accuracy with 50x fewer parameters and < 0.5 MB model size", arXiv preprint arXiv:1602.07360. https://doi.org/10.48550/arXiv.1602.07360
- Jahanshahi, M.R., Jazizadeh, F., Masri, S.F. and Becerik-Gerber, B. (2013), "Unsupervised approach for autonomous pavement-defect detection and quantification using an inexpensive depth sensor", J. Comput. Civil Eng., 27(6), 743-754. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000245
- Kingma, D.P. and Ba, J.L. (2015), "Adam: a method for stochastic optimization", arXiv preprint arXiv:1412.6980. https://doi.org/10.48550/arXiv.1412.6980
- Konig, J., Jenkins, M.D., Barrie, P., Mannion, M. and Morison, G. (2019), "A convolutional neural network for pavement surface crack segmentation using residual connections and attention gating", In: 2019 IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan, September.
- Lee, B.J. and Lee, H.D. (2004), "Position-invariant neural network for digital pavement crack analysis", Comput.-Aided Civil Infrastr. Eng., 19(2), 105-118. https://doi.org/10.1111/j.1467-8667.2004.00341.x
- Li, B., Wang, K.C.P., Zhang, A., Yue, F. and Giuseppe, S. (2019a), "Automatic segmentation and enhancement of pavement cracks based on 3D pavement images", J. Adv. Transport., 2019, 1813763. https://doi.org/10.1155/2019/1813763
- Li, S., Zhao, X. and Zhou, G. (2019b), "Automatic pixel-level multiple damage detection of concrete structure using fully convolutional network", Comput.-Aided Civil Infrastr. Eng., 34, 616-634. https://doi.org/10.1111/mice.12433
- Lin, T.Y., Dollar, P., Girshick, R., He, K., Hariharan, B. and Belongie, S. (2016), "Feature pyramid networks for object detection", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, AZ, USA, June.
- Lin, T.Y., Goyal, P., Girshick, R., He, K. and Dollar, P. (2017), "Focal loss for dense object detection", Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, October.
- Ma, K., Hoai, M. and Samaras, D. (2017), "Large-scale continual road inspection: visual infrastructure assessment in the wild", In: BMVC. https://dx.doi.org/10.5244/C.31.151
- Maeda, H., Sekimoto, Y., Seto, T., Kashiyama, T. and Omata, H. (2018), "Road damage detection using deep neural networks with images captured through a smartphone", arXiv preprint arXiv:1801.09454. https://doi.org/10.48550/arXiv.1801.09454
- Mohammed Y., Uddin, N., Tan, C. and Shi, Z. (2020), "Crack detection using faster R-CNN and point feature matching", Civil Eng. Res. J., 10(3), 555790.
- Munawar, H.S., Hammad, A.W., Haddad, A., Soares, C.A.P. and Waller, S.T. (2021), "Image-based crack detection methods: A review", Infrastructures, 6(8), 115. https://doi.org/10.3390/infrastructures6080115
- Sathya, K., Sangavi, D., Sridharshini, P., Manobharathi, M. and Jayapriya, G. (2020), "Improved image based super resolution and concrete crack prediction using pre-trained deep learning models", J. Soft Comput. Civil Eng., 4(3), 34-44. https://doi.org/10.22115/SCCE.2020.229355.1219
- Shi, Y., Cui, L., Qi, Z., Meng, F. and Chen, Z. (2016), "Automatic road crack detection using random structured forests", IEEE Transact. Intell. Transport. Syst., 17(12), 3434-3445. https://ieeexplore.ieee.org/document/7471507 https://doi.org/10.1109/TITS.2016.2552248
- Sizyakin, R., Voronin, V., Gapon, N. and Pizurica, A. (2020), "A deep learning approach to crack detection on road surfaces", In: Artificial Intelligence and Machine Learning in Defense Applications II, 11543(115430P), 1-7. https://doi.org/10.1117/12.2574131
- Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V. and Rabinovich, A. (2014), "Going deeper with convolutions", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, June.
- Tan, M. and Le, Q. (2019), "Efficientnet: Rethinking model scaling for convolutional neural networks", In: International Conference on Machine Learning, CA, USA, June.
- Wang, G., Wang, K.C.P., Yang, G., Liu, Y., Li, J.Q. and Peters, W. (2022), "Nondestructive bridge deck evaluation using sub-mm 3D laser imaging technology at highway speeds", J. Bridge Eng., 27(6), 04022045. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001888
- Xu, H., Su, X., Wang, Y., Cai, H., Cui, K. and Chen, X. (2019), "Automatic bridge crack detection using a convolutional neural network", Appl. Sci., 9(14), 2867. https://doi.org/10.3390/app9142867
- Yang, X., Li, H., Yu, Y., Luo, X. and Huang, T. (2018), "Automatic pixel-level crack detection and measurement using fully convolutional network", Comput.-Aided Civil Infrastr. Eng., 33(12), 1090-1109. https://doi.org/10.1111/mice.12412
- Yang, F., Zhang, L., Yu, S., Prokhorov, D., Mei, X. and Ling, H. (2019), "Feature pyramid and hierarchical boosting network for pavement crack detection", IEEE Transact. Intell. Transport. Syst., 21(4), 1525-1535. https://doi.org/10.48550/arXiv.1901.06340
- Ye, X.W., Jin, T. and Yun, C.B. (2019), "A review on deep learning-based structural health monitoring of civil infrastructures", Smart Struct. Syst., Int. J., 24(5), 567-586. https://doi.org/10.12989/sss.2019.24.5.567
- Zalama, E., Gomez-Garcia-Bermejo, J., Medina, R. and Llamas, J. (2014), "Road crack detection using visual features extracted by Gabor filters", Comput.-Aided Civil Infrastr. Eng., 29(5), 342-358. https://doi.org/10.1111/mice.12042
- Zhang, A., Wang, K.C.P., Li, B., Yang, E., Dai, X., Peng, Y., Fei, Y., Liu, Y., Li, J Q. and Chen, C. (2017), "Automated pixel-level pavement crack detection on 3D asphalt surfaces using a deep-learning network", Comput.-Aided Civil Infrastr. Eng., 32(10), 805-819. https://doi.org/10.1111/mice.12297
- Zhang, A., Wang, K. C. P., Fei, Y., Liu, Y., Tao, S., Chen, C., Li, J. Q. and Li, B. (2018), "Deep learning-based fully automated pavement crack detection on 3D asphalt surfaces with an improved CrackNet", J. Comput. Civil Eng., 32(5), 04018041. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000775
- Zhao, H., Shi, J., Qi, X., Wang, X. and Jia, J. (2017), "Pyramid scene parsing network", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, July.