DOI QR코드

DOI QR Code

Expression of Organogenesis-related Genes and Analysis of Genetic Stability by ISSR Markers of Regenerants Derived from the Process of in vitro Organogenesis in Japanese Blood Grass (Imperata cylindrica 'Rubra')

기내배양 홍띠 단계별 재분화체의 기관분화 관련 유전자 발현과 ISSR에 기반한 유전적 안정성 분석

  • Ye-Jin Lee (Department of Plant Production Sciences, Graduate School of Sunchon National University) ;
  • In-Jin Kang (Department of Plant Production Sciences, Graduate School of Sunchon National University) ;
  • Chang-Hyu Bae (Department of Plant Production Sciences, Graduate School of Sunchon National University)
  • 이예진 (순천대학교 대학원 식물생산과학부) ;
  • 강인진 (순천대학교 대학원 식물생산과학부) ;
  • 배창휴 (순천대학교 대학원 식물생산과학부)
  • Received : 2023.06.07
  • Accepted : 2023.08.31
  • Published : 2023.10.01

Abstract

The in vitro organogenesis is one of important issues in plant embryology, and somaclonal variations are existing in calli and/or regenerants induced from a process of the organogenesis with in vitro circumstances. In this study, expressions of organogenesis-related genes were evaluated and genetic stability of regenerants derived from the process of in vitro organogenesis were measured using ISSR markers in Imperata cylindrica 'Rubra', Poaceae. The expressions of organogenesis-related genes were detected all of regenerants at the process of the organogenesis. All ISSR markers produced with an average of 71 bands per in vitro-cultured regenerants, and the scorable bands were varied from two to eight with an average of 5.14 bands per a primer. The polymorphism rates of the in vitro regenerants were higher than that of mother plants (1.4%), showing 4.1% (pot-cultured regenerants), 4.3% (field-cultured regenerants), 4.2% (in vitro-cultured regenerants), 5.6% (calli with green shoots) and 1.4% (calli), respectively. The genetic similarity matrix (GSM) among all accessions ranged from 0.747 to 1.0 with a mean of 0.868. GSM of the regenerants showed differences (from 0.972 to 1.00) compared with that of mother plants (0.991). According to the clustering analysis, two independent groups were divided into; the one is mother plants and regenerants cultured at room and open field, the other is regenerants cultured in vitro. The results give a new insight for understanding the dynamics of organogenesis in monocot plant.

화본과 식물 홍띠(Imperata cylindrica 'Rubra')의 기관분화 관련 유전자의 동태와 기내재생체의 유전적 안정성을 조사하고자 기관분화 단계별 재분화체를 작성하여 기관분화 관련 유전자 발현과 ISSR 마커 기반 변이성을 조사하였다. 5종류 총 15개체의 기관분화 단계별 재분화체에서 캘러스 발생 유전자인 FIE는 모식물체 1번을 제외한 14개의 식물체에서 모두 발현되었으며, 뿌리 발생 유전자인 WOX11도 15개의 모든 단계별 재분화체에서 발현하였다. 체세포 발생 유전자인 LEC1B는 15개 식물체에서 모두 발현하였으나 비교적 약하게 발현하였다. 7종류 총 21개체의 기관분화 단계별 재분화체 및 재분화식물체에 대하여 ISSR 분석한 결과, 유전적 다형성은 기관분화 단계별 재분화체 및 순화 재분화체(실내포트 재배식물체 4.1%, 노지 재배식물체 4.3%, 기내배양 홍띠(적색)식물체 4.2%, 녹색신초 발생 캘러스 5.6%, 캘러스 1.4%)에서 대조구인 모식물체(1.4%)와 같거나 높게 나타났다. 또한, 유전적 유사도 지수는 0.747~1.0 사이에 분포하며, 평균 0.868로 나타났다. 군집분석 결과 유전적 유사도 지수 0.809에서 기외 식물체(모식물체, 실내재배 및 노지재배 재분화 녹색 식물체)와 기내식물체 및 재분화 과정상의 분화체(기내배양 중인 홍띠 식물체, 녹색 신초, 적색신초 발생 캘러스, 캘러스)는 독립적인 2개 그룹으로 유집되었다. 이상의 결과는 화본과 식물의 기내배양 시 재분화 과정에서 일어나는 일련의 유전학적 기초자료를 제공해 준다.

Keywords

Acknowledgement

이 논문은 2020년 순천대학교 학술연구비(과제번호: 2020-0202)공모과제로 연구되었음.

References

  1. Amin, S., T.A. Wani, Z.A. Kaloo, S. Singh, R. John, U. Majeed and G.A. Shapooh. 2018. Genetic stability using RAPD and ISSR markers in efficiently in vitro regenerated plants of Inula royleana DC. Meta Gene 18:100-106. https://doi.org/10.1016/j.mgene.2018.08.006
  2. Aversano, R., S. Savarese, J.M. De Nova, L. Frusciante, M. Punzo and D. Carputo. 2009. Genetic stability at nuclear and plastid DNA level in regenerated plants of Solanum species and hybrids. Euphytica 165:353-361. https://doi.org/10.1007/s10681-008-9797-z
  3. Bednarek, P.T. and O. Renata. 2020. Plant tissue culture environment as a switch-key of (epi)genetic changes. Plant Cell, Tissue Organ Cult. 140:245-257. https://doi.org/10.1007/s11240-019-01724-1
  4. Bouyer, D., F. Roudier, M. Heese, E.D. Andersen, D. Gey, M.K. Nowack, J. Goodrich, J.-P. Renou, P.E. Grini, V. Colot and A. Schnittger. 2011. Polycomb repressive complex 2 controls the embryo-to-seedling phase transition. PLoS Genet. 7(3):e1002014.
  5. Cheng, S., F. Tan, Y. Lu, X. Liu, T. Li, W. Yuan, Y. Zhao and D.-X. Zhou. 2018. WOX11 recruits a histone H3K27me3 demethylase to promote gene expression during shoot development in rice. Nucleic Acids Res. 46(5):2356-2369. https://doi.org/10.1093/nar/gky017
  6. Cho, J.-H. and J.-H. Byeon. 2011. Establishment of callus induction and plant regeneration system from mature seeds of Miscanthus sinensis. Korean J. Plant Res. 24(5):628-635. https://doi.org/10.7732/kjpr.2011.24.5.628
  7. Dewir, Y.H., Nurmansyah, Y. Naidoo and J.A.T. da Silva. 2018. Thidiazuron-induced abnormalities in plant tissue cultures. Plant Cell Rep. 37:1451-1470. https://doi.org/10.1007/s00299-018-2326-1
  8. Doopedio. 2008. http://www.doopedia.co.kr.
  9. Fang, G., S. Hammar and R. Grumet. 1992. A quick inexpensive method of removing polysaccharides from plant genomic DNA. Biotechniques 13:52-55.
  10. Fatiha, B., S.-R. Carolina and M. Carmen. 2019. Somaclonal variation in olive (Olea europaea L.) plants regenerated via somatic embryogenesis: Influence of genotype and culture age on genetic stability. Sci. Hortic. 251:260-266. https://doi.org/10.1016/j.scienta.2019.03.010
  11. Ferreira, M.D.S., A.D.J. Rocha, F.D.S. Nascimento, W.D.D.S. Oliveira, J.M.D.S. Soares, T.A. Reboucas, L.S.M. Lino, F. Haddad, C.F. Ferreira, J.A.D. Santos-Serejo, J.S. Fernandez and E.P. Amorim. 2023. The role of somaclonal variation in plant genetic improvement: A systematic review. Agronomy 13(3):730. https://doi.org/10.3390/agronomy13030730
  12. Gallois, J-L., F.R. Nora, Y. Mizukami and R. Sablowski. 2004. WUSCHEL induces shoot stem cell activity and developmental plasticity in the root meristem. Genes Dev. 18:375-380. https://doi.org/10.1101/gad.291204
  13. Garcia, C., A.-A.F. de Almeida, M. Costa, D. Brito, R. Valle, S. Royaert and J.-P. Marelli. 2019. Abnormalities in somatic embryogenesis caused by 2,4-D: An overview. Plant Cell, Tissue Organ Cult. 137:193-212. https://doi.org/10.1007/s11240-019-01569-8
  14. Goh, E.J., E.S. Seong, J.H. Yoo, H.Y. Kil, J.G. Lee, I.S. Hwang, N.-j. Kim, B.K. Ghimire, M.J. Kim, J.K. Lee, J.D. Lim, N.Y. Kim and C.Y. Yu. 2011. Effect of plant growth regulators and media on regeneration of Sorghum bicolor (L) Moench. Korean J. Plant Res. 24(2):168-173. https://doi.org/10.7732/kjpr.2011.24.2.168
  15. Hans, M., V. Danny, G. Danny and W. Stefann. 2014. The molecular path to in vitro shoot regeneration. Biotechnol. Adv. 32:107-121. https://doi.org/10.1016/j.biotechadv.2013.12.002
  16. Holm, L.G., D.L. Pucknett, J.B. Pancho and J.P. Herberger. 1977. The World's Worst Weeds. Distribution and biology. Univ. Press of Hawaii, Honolulu, HI (USA).
  17. Hu, H., L. Xiong and Y. Yang. 2005. Rice SERK1 gene positively regulates somatic embryogenesis of cultured cell and host defense response against fungal infection. Planta 222: 107-117. https://doi.org/10.1007/s00425-005-1534-4
  18. Iwase, A., N. Mitsuda, M. Ikeuchi, M. Ohnuma, C. Koizuka, K. Kawamoto, J. Imamura, H. Ezura and K. Sugimoto. 2013a. Arabidopsis WIND1 induces callus formation in rapeseed, tomato, and tobacco. Plant Signal. Behav. 8(12):e27432.
  19. Iwase, A., N. Mitsuda, T. Koyama, K. Hiratsu, M. Kojima, T. Arai, Y. Inoue, M. Seki, H. Sakakibara, K. Sugimoto and M. Ohme-Takagi. 2013b. The AP2/ERF transcription factor WIND1 controls cell dedifferentiation in Arabidopsis. Curr. Biol. 21:508-514. https://doi.org/10.1016/j.cub.2011.02.020
  20. Jin, S., R. Mushke, H. Zhu, L. Tu, Z. Lin, Y. Zhang and X. Zhang. 2008. Detection of somaclonal variation of cotton (Gossypium hirsutum) using cytogenetics, flow cytometry and molecular markers. Plant Cell Rep. 27:1303-1316. https://doi.org/10.1007/s00299-008-0557-2
  21. Kamiya, N., J.-I. Itoh, A. Morikami, Y. Nagato and M. Matsuoka. 2003. The SCARECROW gene's role in asymmetric cell divisions in rice plants. Plant J. 36:45-54. https://doi.org/10.1046/j.1365-313X.2003.01856.x
  22. Kang, I.-J., Y.-J. Lee and C.-H. Bae. 2021. In vitro regeneration and genetic stability analysis of the regenerated green plants in Japanese blood grass (Imperata cylindrica 'Rubra'). Korean J. Plant Res. 34(2):156-165 (in Korean). https://doi.org/10.7732/KJPR.2021.34.2.156
  23. Lee, H., R.L. Fischer, R.B. Goldberg and J.J. Harada. 2003. Arabidopsis LEAFY COTYLEDON1 represents a functionally specialized subunit of the CCAAT binding transcription factor. PNASU. 100(4):2152-2156. https://doi.org/10.1073/pnas.0437909100
  24. Lee, Y.-J., E.-Y. K im and C.-H. Bae. 2023a. Expression of organogenesis-related genes of the plant-materials induced in the process of in vitro organogenesis of Japanese blood grass, and organogenesis-related genes in plants. Proceeding of the Plant Resources Society of Korea. April 27~28, 2023. Pyeong-Chang, Korea. p. 34 (in Korean).
  25. Lee, Y.-J., I.-J. Kang and C.-H. Bae. 2023b. Genetic stability of the plant-materials induced in the process of in vitro organogenesis of Japanese blood grass. Proceeding of the Plant Resources Society of Korea. April 27~28, 2023. Pyeong-Chang, Korea. p. 35 (in Korean).
  26. Lee, Y.-J., K.S. Hwang and P.S. Choi. 2023c. Effect of carbon sources on somatic embryogenesis and cotyledon number variations in carrot (Daucus carota L.). J. Plant Biotechnol. 50:89-95.
  27. Lewis, M.W., M.E. Leslie, E.H. Fulcher, L. Darnielle, P. Healy, J.-Y. Youn and S.J. Liljeren. 2010. The SERK1 receptor-like kinase regulates organ separation in Arabidopsis flowers. Plant J. 62(5):817-828. https://doi.org/10.1111/j.1365-313X.2010.04194.x
  28. Liu, F., L.-L. Huang, Y.-L. Li, P. Reinhoud, M.A. Jongsma and C.-Y. Wang. 2011. Shoot organogenesis in leaf explant of Hydrangea macrophylla 'Hyd1' and assessing genetic stability of regenerants using ISSR markers. Plant Cell, Tissue Organ Cult. 104:111-117. https://doi.org/10.1007/s11240-010-9797-2
  29. Liu, J., X. Hu, P. Qin, K. Prasad, Y. Hu and L. Xu. 2018. The WOX11-LBD16 pathway promotes pluripotency acquisition in callus cells during de novo shoot regeneration in tissue culture. Plant Cell Physiol. 59(4):739-748. https://doi.org/10.1093/pcp/pcy010
  30. Lopes, F.L., C. Galvan-Ampudia and B. Landrein. 2021. WUSCHEL in the shoot apical meristem: Old player, new tricks. J. Exp. Bot. 72(5):1527-1535. https://doi.org/10.1093/jxb/eraa572
  31. Luo, M., P. Bilodeau, E.S. Dennis, W.J. Peacock and A. Chaudhury. 2000. Expression and parent-of-origin effects for FIS2, MEA, and FIE in the endosperm and embryo of developing Arabidopsis seeds. PNASU. 97(19):10637-10642. https://doi.org/10.1073/pnas.170292997
  32. Mo, X.Y., T. Long, Z. Liu, H. Lin, X.Z. Liu, Y.M. Yang and H.Y. Zhang. 2009. AFLP analysis of somaclonal variations in Eucalyptus globulus. Biol. Plant. 53(4):741-744. https://doi.org/10.1007/s10535-009-0135-7
  33. Murashige, T. and F. Skoog. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15:473-497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  34. Nic-Can, G.I., A. Lόpes-Torres, F. Barredo-Pool, K. Wrobel, V.M. Loyola-Vargas, R.R. Rojas-Herrera and C. De-la-Pena. 2013. New insights into somatic embryogenesis: LEAFY COTYLEDON1, BABY BOOM1 and WUSCHEL-RELATED HOMEOBOX4 are epigenetically regulated in Coffea canephora. Plos One 8(8): e72160.
  35. Ouakfaoui, S.E., J. Schnell, A. Abdeen, A. Colville, H. Labbe, S. Han, B. Baum, S. Laberge and B. Miki. 2010. Control of somatic embryogenesis and embryo development by AP2 transcription factors. Plant Mol. Biol. 74:312-326. https://doi.org/10.1007/s11103-010-9674-8
  36. Ramakrishnan, M., S.A. Ceasar, V. Duraipandiyan and S. Ignacimuthu. 2014. Efficient plant regeneration from shoot apex explants of maize (Zea mays) and analysis of genetic fidelity of regenerated plants by ISSR markers. Plant Cell, Tissue Organ Cult. 119:183-196. https://doi.org/10.1007/s11240-014-0525-1
  37. Ray, T., I. Dutta, P. Saha, S. Das and S.C. Roy. 2006. Genetic stability of three economically important micropropagated banana (Musa spp.) cultivars of lower Indo-Gangetic plains, as assessed by RAPD and ISSR markers. Plant Cell, Tissue Organ Cult. 85:11-21. https://doi.org/10.1007/s11240-005-9044-4
  38. Rebouillat, J., A. Dievart, L. Verdeil, J. Escoute, G. Giese, J.C. Breitler, P. Gantet, S. Espeout, E. Guiderdoni and C. Perin. 2009. Molecular genetics of rice root development. Rice 2:15-34. https://doi.org/10.1007/s12284-008-9016-5
  39. Ryu, J.H., E.H. Kim, H.S. So, M.Y. Chung, W.S. Song and C.H. Bae. 2013. Plant regeneration and genetic diversity of regenerants from seed-derived callus of reed (Phragmites communis Trinius). Korean J. Plant Res. 26(2):320-327 (in Korean). https://doi.org/10.7732/kjpr.2013.26.2.320
  40. Seo, P.-J. 2018. Epigenetic mechanism related to dedifferentiation in plants. Molecular and Cellular Biology Newsletter, 2018. September, pp. 1-6 (in Korean).
  41. Umami, N., T. Gondo, H. Tanaka, M.M. Rahman and R. Ajashi. 2012. Efficient nursery plant production of dwarf cogongrass (Imperata cylindrica L.) through mass propagation in liquid culture. Grassl. Sci. 58:201-207. https://doi.org/10.1111/grs.12001
  42. Vijayan, A., P.P. Pillai, A.S. Hemanthakumar and P.N. Krishnan. 2015. Improve in vitro propagation, genetic stability and analysis of corosolic acid synthesis in regenerants of Lagerstroemia speciosa (L.) Pers. by HPLC and gene expression profiles. Plant Cell, Tissue Organ Cult. 120:1209-1214. https://doi.org/10.1007/s11240-014-0665-3
  43. Wu, S., C.-M. Lee, T. Hayashi, S. Price, F. Divol, S. Henry, G. Pauluzzi, C. Perin and K.L. Gallagher. 2014. A plausible mechanism, based upon short-root movement, for regulating the number of cortex cell layers in roots. Proc. Natl. Acad. Sci. U.S.A. 111(45):16184-16189. https://doi.org/10.1073/pnas.1407371111
  44. Zhao, Y., Y. Hu, M. Dai, L. Huang and D-X. Zhou. 2009. The WUSCHEL-related homeobox gene WOX11 is required to activate shoot-borne crown root development in rice. Plant Cell 21:736-748.