Acknowledgement
The study was supported by the National Key Research and Development Program of China under Award Number 2019YFE0118500, China Postdoctoral Science Foundation (2019M652006) and the National Natural Science Foundation of China (NSFC) under Award Numbers (51708545 and 52078478). The authors wish to express their gratitude to the staff and students in the Structural Engineering Laboratory for their extensive assistance. The data used to support the findings of this study are available from the corresponding author upon request.
References
- Agou, V.D., Pavlides, A. and Hristopulos, D.T. (2022), "Spatial modeling of precipitation based on data-driven warping of Gaussian processes", Entropy-Switz, 24(3), p. 321. https://doi.org/10.3390/e24030321
- Baesens, B., Viaene, S., Van den Poel, D., Vanthienen, J. and Dedene, G. (2002), "Bayesian neural network learning for repeat purchase modelling in direct marketing", Eur. J. Oper. Res., 138(1), 191-211. https://doi.org/10.1016/S0377-2217(01)00129-1
- Binois, M. and Gramacy, R.B. (2021), "hetGP: Heteroskedastic Gaussian Process Modeling and Sequential Design in R", J. Stat. Softw., 98(13), 1-44. https://doi.org/10.18637/jss.v098.i13
- Bludszuweit, H., Dominguez-Navarro, J.A. and Llombart, A. (2008), "Statistical analysis of wind power forecast error", IEEE Transact. Power Syst., 23(3), 983-991. https://doi.org/10.1109/TPWRS.2008.922526
- Braunfelds, J., Senkans, U., Skels, P., Janeliukstis, R., Porins, J., Spolitis, S. and Bobrovs, V. (2022), "Road Pavement Structural Health Monitoring by Embedded Fiber-Bragg-Grating-Based Optical Sensors", Sensors, 22(12). https://doi.org/10.3390/s22124581
- Brownjohn, J.M.W. (2007), "Structural health monitoring of civil infrastructure", Philosoph. Transact. Royal Soc. A: Mathe. Phys. Eng. Sci., 365(1851), 589-622. https://doi.org/10.1098/rsta.2006.1925
- Crawford, L., Wood, K.C., Zhou, X. and Mukherjee, S. (2019), "Bayesian Approximate Kernel Regression With Variable Selection", J. Am. Stat. Assoc., 113(524), 1710-1721. https://doi.org/10.1080/01621459.2017.1361830
- Glisic, B. (2022), "Concise historic overview of strain sensors used in the monitoring of civil structures: The first one hundred years", Sensors, 22(6), p. 2397. https://doi.org/10.3390/s22062397
- Goldberg, P.W. (1998), "Regression with input-dependent noise: A Gaussian process treatment", Adv. Neural Inform. Process. Syst., 10, 493-499.
- Herbko, M., Lopato, P., Psuj, G. and Rajagopal, P. (2022), "Application of Selected Fractal Geometry Resonators in Microstrip Strain Sensors", IEEE Sens. J., 22(13), 12656-12663. https://doi.org/10.1109/JSEN.2022.3177932
- Iba, Y. and Akaho, S. (2010), "Gaussian process regression with measurement error", IEICE Transact. Inform. Syst., 93(10), 589-622. https://doi.org/10.1587/transinf.E93.D.2680
- Ju, M., Park, C. and Kim, G. (2011), "Structural Health Monitoring (SHM) for a cable stayed bridge under typhoon", KSCE J. Civil Eng., 19(4), 1058-1068. https://doi.org/10.1007/s12205-015-0039-3
- Kersting, K. (2007), "Most Likely Heteroscedastic Gaussian Process Regression", Proceedings of the 24th International Conference on Machine Learning, pp. 393-400.
- Khan, M.S., Caprani, C., Ghosh, S. and Ghosh, J. (2021), "Value of strain-based structural health monitoring as decision support for heavy load access to bridges", Struct. Infrastruct. Eng., 18(4), 521-536. https://doi.org/10.1080/15732479.2021.1890140
- Ko, J.M. and Ni, Y.Q. (2005), "Technology developments in structural health monitoring of large-scale bridges", J. Eng. Struct., 27(12), 1715-1725. https://doi.org/10.1016/j.engstruct.2005.02.021
- Kopsaftopoulos. F.P. and Fassois, S.D. (2011), "Scalar and vector time series methods for vibration based damage diagnosis in a scale aircraft skeleton structure", J. Theor. Appl. Mech., 49(3), 727-756. https://doi.org/10.1088/1742-6596/305/1/012056
- Lee, W.F., Cheng, T.T., Huang, C.K., Yen, C.I. and Mei, H.T. (2014), "Performance of a highway bridge under extreme natural hazards: Case study on bridge performance during the 2009 Typhoon Morakot", J. Perform. Constr. Facil., 28(1), 49-60. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000418
- Locke, W., Sybrandt, J., Redmond, L., Safro, I. and Atamturktur, S. (2020), "Using drive-by health monitoring to detect bridge damage considering environmental and operational effects", J. Sound Vib., 468. https://doi.org/10.1016/j.jsv.2019.115088
- Majkovic, D., O'Kiely, P., Kramberger, B., Vracko, M., Turk, J., Pazek, K. and Rozman, C. (2016), "Comparison of using regression modeling and an artificial neural network for herbage dry matter yield forecasting", J. Chemometr., 30(4), 203-209. https://doi.org/10.1002/cem.2770
- Mohammadi, M., Al-Fuqaha, A., Sorour, S and Guizani, M. (2007), "Deep learning for IoT big data and streaming analytics: A survey", IEEE Commun. Surv. Tutorials, 20(4), 2923-2960. https://doi.org/10.1109/COMST.2018.2844341
- Mousavi, M. and Gandomi, A.H. (2021), "Structural health monitoring under environmental and operational variations using MCD prediction error", J. Sound Vib., 512. https://doi.org/10.1016/j.jsv.2021.116370
- Munoz-Gonzalez, L., Lazaro-Gredilla, M. and Figueiras-Vidal, A.R. (2016), "Laplace approximation for divisive gaussian processes for nonstationary regression", IEEE T. Pattern Anal., 38(3), 618-624. https://doi.org/10.1109/TPAMI.2015.2452914
- Ni, Y.Q., Xia, Y., Liao, W.Y. and Ko, J.M. (2009), "Technology innovation in developing the structural health monitoring system for Guangzhou new TV tower", Struct. Control Health Monitor., 16(1), 73-98. https://doi.org/10.1002/stc.303
- Papadimitriou, C. (2004), "Optimal sensor placement methodology for parametric identification of structural systems", J. Sound Vib., 278(4-5), 923-947. https://doi.org/10.1016/j.jsv.2003.10.063
- Parida, S.S., Nikellis, A., Sett, K. and Singla, P. (2020), "Model-data fusion for seismic performance evaluation of an instrumented highway bridge", Earthq. Eng. Struct. Dyn., 49(14), 1559-1578. https://doi.org/10.1002/eqe.3317
- Partal, T. (2017), "Wavelet regression and wavelet neural network models for forecasting monthly streamflow", J. Water Clim. Change, 8(1), 48-61. https://doi.org/10.2166/wcc.2016.091
- Porter, K.A., Beck, J.L. and Shaikhutdinov, R.V. (2002), "Sensitivity of building loss estimates to major uncertain variables", Earthq. Spectra, 18(4), 719-743. https://doi.org/10.1193/1.1516201
- Rasmussen, C.E. and Nickisch, H. (2010), "Gaussian Processes for Machine Learning (GPML) Toolbox", J. Mach. Learn Res., 11, 3011-3015. https://doi.org/10.1115/1.4002474
- Sierra-Garcia, J.E. and Santos, M. (2021), "Improving wind turbine pitch control by effective wind neuro-estimators", IEEE Access., 9, 10513-10425. https://doi.org/10.1109/ACCESS.2021.3051063
- Skolidis, G. and Sanguinetti, G. (2011), "Bayesian Multitask Classification with Gaussian Process Priors", IEEE T. Neural Networ., 22(12), 2011-2021. https://doi.org/10.1109/TNN.2011.2168568
- Subasi, A. (2013), "Classification of EMG signals using PSO optimized SVM for diagnosis of neuromuscular disorders", Comput. Biol. Med., 43(5), 576-586. https://doi.org/10.1016/j.compbiomed.2013.01.020
- Talaei, S. and Ma, H.W. (2007), "Vibration-based Structural Damage Detection Using Twin Gaussian Process (TGP)", Structures, 16, 10-19. https://doi.org/10.1016/j.istruc.2018.08.006
- Theiler, M., Frangi, A. and Steiger, R. (2014), "Strain-based calculation model for centrically and eccentrically loaded timber columns", Eng. Struct., 56, 1103-1116. https://doi.org/10.1016/j.engstruct.2013.06.032
- Urban, S., Ludersdorfer, M. and van der Smagt, P. (2015), "Sensor Calibration and Hysteresis Compensation with Heteroscedastic Gaussian Processes", IEEE Sens. J., 15(11), 6498-6506. https://doi.org/10.1109/JSEN.2015.2455814
- Von Krannichfeldt, L., Wang, Y and Hug, G. (2007), "Online Ensemble Learning for Load Forecasting", IEEE T. Power Syst., 36(1), 545-648. https://doi.org/10.1109/TPWRS.2020.3036230
- Wan, H.P. and Ni, Y.Q. (2019a), "Binary Segmentation for Structural Condition Classification Using Structural Health Monitoring Data", J. Aerospace Eng., 32(1). https://doi.org/10.1061/(ASCE)AS.1943-5525.0000956
- Wan, H.P. and Ni, Y.Q. (2019b), "Bayesian modeling approach for forecast of structural stress response using structural health monitoring data", J. Struct. Eng., 144(9). https://doi.org/10.1061/(ASCE)ST.1943-541X.0002085
- Wan, H.P. and Ni, Y.Q. (2019c), "Bayesian multi-task learning methodology for reconstruction of structural health monitoring data", Struct. Health Monit., 18(4), 1282-1309. https://doi.org/10.1177/1475921718794953
- Wan, H.P., Dong, G.S., Luo, Y.Z. and Ni, Y.Q. (2022), "An improved complex multi-task Bayesian compressive sensing approach for compression and reconstruction of SHM data", Mech. Syst. Signal Pr., 167. https://doi.org/10.1016/J.YMSSP.2021.108531
- Wang, Q.A., Wu, Z. and Liu, S. (2018a), "Multivariate probabilistic seismic demand model for the bridge multidimensional fragility analysis", KSCE J. Civil Eng., 22(9), 3443-3451. https://doi.org/10.1007/s12205-018-1792-4
- Wang, Q.A., Wu, Z. and Liu, S. (2018b), "Multivariate probabilistic seismic demand model for the bridge multidimensional fragility analysis", KSCE J. Civil Eng., 22(9), 3443-3451. https://doi.org/10.1007/s12205-018-1792-4
- Wang, Q.A., Wang, C.B., Ma, Z.G., Chen, W., Ni, Y.Q., Wang, C.F., Yan, B.G. and Guan, P.X. (2022a), "Bayesian dynamic linear model framework for SHM data forecasting and missing data imputation during typhoon events", Struct. Health Monitor., 21(6), 2933-2950. https://doi.org/10.1177/14759217221079529
- Wang, Q.A., Zhang, C., Ma, Z.G., Jiao, G.Y., Jiang, X.W., Ni, Y.Q., Wang, Y.C., Du, Y.T., Qu, G.B. and Huang, J. (2022b), "Towards long-transmission-distance and semi-active wireless strain sensing enabled by dual-interrogation-mode RFID technology", Struct. Control Health., 29(11), e3069. https://doi.org/10.1002/stc.3069
- Wang, Q.A., Zhang, C., Ma, Z.G. and Ni, Y.Q. (2022c), "Modelling and forecasting of SHM strain measurement for a large-scale suspension bridge during typhoon events using variational heteroscedasic Gaussian process", Eng. Struct., 251, 113554. https://doi.org/10.1016/j.engstruct.2021.113554
- Wang, Q.A., Dai, Y., Ma, Z.G., Wang, J.F., Lin, J.F., Ni, Y.Q., Ren, W.X., Jiang, J., Yang, X. and Yan, J.R. (2023), "Towards high-precision data modeling of SHM measurements using an improved sparse Bayesian learning scheme with strong generalization ability", Struct. Health Monitor. https://doi.org/10.1177/14759217231170316
- Wright, J.H. (2008), "Bayesian Model Averaging and exchange rate forecasts", J. Econometr., 146(2), 329-341. https://doi.org/10.1016/j.jeconom.2008.08.012
- Yoon, S. and Kim, S. (2010), "k-Top Scoring Pair Algorithm for feature selection in SVM with applications to microarray data classification", Soft Comput., 14(2), 151-159. https://doi.org/10.1007/s00500-009-0437-x
- Zhang, Q.H. and Ni, Y.Q. (2020), "Improved most likely heteroscedastic Gaussian process regression via Bayesian residual moment estimator", IEEE Transact. Signal Process., 68, 3450-3460. https://doi.org/10.1109/TSP.2020.2997940