DOI QR코드

DOI QR Code

Extended artificial neural network for estimating the global response of a cable-stayed bridge based on limited multi-response data

  • Namju Byun (Future and Fusion Laboratory of Architectural, Civil and Environmental Engineering, Korea University) ;
  • Jeonghwa Lee (Future and Fusion Laboratory of Architectural, Civil and Environmental Engineering, Korea University) ;
  • Keesei Lee (Department of Urban Infrastructure Research, Seoul Institute of Technology) ;
  • Young-Jong Kang (School of Civil, Environmental and Architectural Engineering, Korea University)
  • 투고 : 2023.04.28
  • 심사 : 2023.10.10
  • 발행 : 2023.10.25

초록

A method that can estimate global deformation and internal forces using a limited amount of displacement data and based on the shape superposition technique and a neural network has been recently developed. However, it is difficult to directly measure sufficient displacement data owing to the limitations of conventional displacement meters and the high cost of global navigation satellite systems (GNSS). Therefore, in this study, the previously developed estimation method was extended by combining displacement, slope, and strain to improve the estimation accuracy while reducing the need for high-cost GNSS. To validate the proposed model, the global deformation and internal forces of a cable-stayed bridge were estimated using limited multi-response data. The effect of multi-response data was analyzed, and the estimation performance of the extended method was verified by comparing its results with those of previous methods using a numerical model. The comparison results reveal that the extended method has better performance when estimating global responses than previous methods.

키워드

과제정보

This work was supported by the National Research Foundation of Korea (NRF) funded by the Korea Government (MIST) [grant No. 2020R1A2C2014450] and by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education [grant No. 2022R1I1A1A01053382].

참고문헌

  1. Breiman, L. (2001), "Random Forests", Mach. Learn., 45, 5-32. https://doi.org/10.1023/A:1010933404324
  2. Byun, N. and Kang, Y.-J. (2023), "Improved estimation method of global deformation and internal forces for cable-stayed bridge using neural network and limited displacement data", Available at SSRN. http://dx.doi.org/10.2139/ssrn.4329171 
  3. Byun, N., Lee, J., Won, J.-Y. and Kang, Y.-J. (2022), "Structural responses estimation of cable-stayed bridge from limited number of multi-response data", Sensors, 22, 3745. https://doi.org/10.3390/s22103745 
  4. Castellon, D.F., Fenerci, A. and Oiseth, O. (2021), "A comparative study of wind-induced dynamic response models of long-span bridges using artificial neural networks, support vector regression and buffeting theory", J. Wind Eng. Indust. Aerodyn., 209. https://doi.org/10.1016/j.jweia.2020.104484 
  5. Cho, S., Sim, S., Park, O. and Lee, J. (2014), "Extension of indirect displacement estimation method using acceleration and strain to various types of beam structures", Smart Struct. Syst., Int. J., 14(4), 699-718. https://doi.org/10.12989/sss.2014.14.4.699 
  6. Cho, S., Yun, C.-B. and Sim, S.-H. (2015), "Displacement estimation of bridge structures using data fusion of acceleration and strain measurement incorporating finite element model", Smart Struct. Syst., Int. J., 15(3), 645-663. https://doi.org/10.12989/sss.2015.15.3.645 
  7. Choi, J.H., Lee, K.S. and Kang, Y.J. (2017a), "Quasi-static responses estimation of a cable-stayed bridge from displacement data at a limited number of points", Int. J. Steel Struct., 17, 789-800. https://doi.org/10.1007/s13296-017-6032-6 
  8. Cortes, C. and Vapnik, V. (1995), "Support-vector networks", Mach. Learn., 20, 273-297. https://doi.org/10.1007/BF00994018 
  9. Deng, H., Zhang, H., Wang, J., Zhang, J., Ma, M. and Zhong, X. (2019), "Modal learning displacement-strain transformation", Rev. Scientif. Instrum., 90, 075113. https://doi.org/10.1063/1.5100905 
  10. Duan, D.Y., Wang, Z.C., Sun, X.T. and Xin, Y. (2022), "A data fusion method for bridge displacement reconstruction based on LSTM networks", Smart Struct. Syst., Int. J., 29(4), 599-616. https://doi.org/10.12989/sss.2022.29.4.599 
  11. Foss, G.C. and Haugse, E.D. (1995), "Using modal test results to develop strain to displacement transformation", Proceedings of the 13th International Modal Analysis Conference, Nashville, TN, USA. 
  12. Gulgec, N.S., Takac, M. and Pakzad, S.N. (2020), "Structural sensing with deep learning: Strain estimation from acceleration data for fatigue assessment", Comput.-Aided Civil Infrastr. Eng., 35, 1349-1364. https://doi.org/10.1111/mice.12565 
  13. Hou, X., Yang, X. and Huang, Q. (2005), "Using inclinometers to measure bridge deflection", J. Bridge Eng., 10, 564-569. https://doi.org/10.1061/(ASCE)1084-0702(2005)10:5(564) 
  14. Kim, S., Won, D.H. and Kang, Y.J. (2016a), "Ultimate behavior of steel cable-stayed bridges - I. Rational ultimate analysis method", Int. J. Steel Struct., 16(2), 601-624. https://doi.org/10.1007/s13296-016-6027-8 
  15. Kim, S., Won, D.H. and Kang, Y.J. (2016b), "Ultimate behavior of steel cable-stayed bridges - II. Parametric study", Int. J. Steel Struct., 16(2), 625-636. https://doi.org/10.1007/s13296-016-6028-7 
  16. Kliewer, K. and Glisic, B. (2019), "A comparison of strain-based methods for the evaluation of the relative displacement of beam-like structures", Front. Built Environ., 15, p. 118. https://doi.org/10.3389/fbuil.2019.00118 
  17. Koo, K.Y., Brownjohn, J.M.W., List, D.I. and Cole, R. (2013), "Structural health monitoring of the Tamar suspension bridge", Struct. Control Health Monitor., 20, 609-625. https://doi.org/10.1002/stc.1481 
  18. Lei, X., Siringoringo, D.M., Dong, Y. and Sun, Z. (2023), "Interpretable machine learning methods for clarification of load-displacement effects on cable-stayed bridge", Measurement, 220, p. 113390. https://doi.org/10.1016/j.measurement.2023.113390 
  19. Lee, H.S., Hong, Y.H. and Park, H.W. (2010), "Design of an FIR filter for the displacement reconstruction using measured acceleration in low-frequency dominant structures", Int. J. Numer. Methods Eng., 82, 403-434. https://doi.org/10.1002/nme.2769 
  20. Li, L., Zhong, B.-S., Li, W.-Q., Sun, W. and Zhu, X.-J. (2017), "Structural shape reconstruction of fiber Bragg grating flexible plate based on strain modes using finite element method", J. Intell. Mater. Syst. Struct., 29, 463-478. https://doi.org/10.1177/1045389x17708480 
  21. Li, J., He, Z. and Fan, G. (2022), "Structural health monitoring response reconstruction based on UAGAN under structural condition variations with few-shot learning", Smart Struct. Syst., Int. J., 30(6), 687-701. https://doi.org/10.12989/sss.2023.30.6.687 
  22. Moon, H.S., Ok, S., Chun, P.-j. and Lim, Y.M. (2019), "Artificial neural network for vertical displacement prediction of a bridge from strains (Part 1): girder bridge under moving vehicles", Appl. Sci., 9. https://doi.org/10.3390/app9142881 
  23. Oh, B.K., Glisic, B., Kim, Y. and Park, H.S. (2019), "Convolutional neural network-based wind-induced response estimation model for tall buildings", Comput.-Aided Civil Infrastr. Eng., 34, 843-858. https://doi.org/10.1111/mice.12476 
  24. Park, K.-T., Kim, S.-H., Park, H.-S. and Lee, K.-W. (2005), "The determination of bridge displacement using measured acceleration", Eng. Struct., 27, 371-378. https://doi.org/10.1016/j.engstruct.2004.10.013 
  25. Park, J.-W., Sim, S.-H., Jung, H.-J., Spencer Jr, B.F. (2013), "Development of a wireless displacement measurement system using acceleration responses", Sensors, 13, 8377-8392. https://doi.org/10.3390/s130708377 
  26. Rapp, S., Kang, L.-H., Han, J.-H., Mueller, U.C. and Baier, H. (2009), "Displacement field estimation for a two-dimensional structure using fiber bragg grating sensors", Smart Mater. Struct., 18, 025006. https://doi.org/10.1088/0964-1726/18/2/025006 
  27. Sarwar, M.Z. and Park, J. (2020), "Bridge displacement estimation using a co-located acceleration and strain", Sensors, 20, 1109. https://dx.doi.org/10.20944/preprints202001.0253.v1 
  28. Shin, S., Lee, S.-U., Kim, Y. and Kim, N.-S. (2012), "Estimation of bridge displacement responses using FBG sensors and theoretical mode shapes", Struct. Eng. Mech., Int. J., 42(2), 229-245. https://doi.org/10.12989/sem.2012.42.2.229 
  29. Sun, L., Sun, Z., Dan, D., Zhang, Q. and Huang, H. (2009), "Researches and implementations of structural health monitoring systems for long span bridges in China", JSCE, 26, 13s-27s. https://doi.org/10.2208/jsceseee.26.13s 
  30. Wong, K.-Y. (2004), "Instrumentation and health monitoring of cable-supported bridges", Struct. Control Health Monitor., 11, 91-124. https://doi.org/10.1002/stc.33 
  31. Wu, R.-T. and Jahanshahi, M.R. (2019), "Deep convolutional neural network for structural dynamic response estimation and system identification", J. Eng. Mech., 145, 04018125. https://doi.org/10.1061/(asce)em.1943-7889.0001556 
  32. Xue, J. and Ou, G. (2021), "Predicting wind-induced structural response with LSTM in transmission tower-line system", Smart Struct. Syst., Int. J., 28(3), 391-405. https://doi.org/10.12989/sss.2021.28.3.391 
  33. Ye, X.-W., Sun, Z. and Lu, J. (2023), "Prediction and early warning of wind-induced girder and tower vibration in cable-stayed bridges with machine learning-based approach", Eng. Struct., 275. https://doi.org/10.1016/j.engstruct.2022.115261 
  34. Zhang, Q., Fu, X., Sun, Z. and Ren, L. (2022), "A smart multi-rate data fusion method for displacement reconstruction of beam structures", Sensors, 22, 3167. https://doi.org/10.3390/s22093167