과제정보
This study is supported by National Natural Science Foundation of China (Grant No. 51678235) and the Natural Science Foundation of Hunan Province (2020JJ5195), to which the authors are grateful.
참고문헌
- Ali, R., Kang, D., Suh, G. and Cha, Y.J. (2021), "Real-time multiple damage mapping using autonomous UAV and deep faster region-based neural networks for GPS-denied structures", Automat. Constr., 130(2), 103831. https://doi.org/10.1016/j.autcon.2021.103831
- Bertelsen, I.M.G., Kragh, C., Cardinaud, G., Ottosen, L.M. and Fischer, G. (2019), "Quantification of plastic shrinkage cracking in mortars using digital image correlation", Cement Concrete Res., 123, 105761. https://doi.org/10.1016/j.cemconres.2019.05.006
- Bochkovskiy, A., Wang, C.Y. and Liao, H.Y.M. (2020), "Yolov4: Optimal speed and accuracy of object detection", arXiv preprint arXiv:2004.10934, 2020. https://doi.org/10.48550/arXiv.2004.10934
- Cha, Y.J., Choi, W. and Buyukozturk, O. (2017), "Deep learning- based crack damage detection using convolutional neural networks", Comput. Aided Civil Infrastr. Eng., 32(5), 361-378. https://doi.org/10.1111/mice.12263
- Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K. and Yuille, A.L. (2016), "Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs", IEEE Transact. Pattern Anal. Mach. Intell., 40(4), 834-848. https://doi.org/10.1109/TPAMI.2017.2699184
- Chen, L.C., Papandreou, G., Schroff, F. and Adam, H. (2017), "Rethinking atrous convolution for semantic image segmentation", arXiv preprint arXiv:1706.05587. https://doi.org/10.48550/arXiv.1706.05587
- Choi, W. and Cha, Y.J. (2019), "SDDNet: Real-time crack segmentation", IEEE Transact. Industr. Electron., 67(9), 8016-8025. https://doi.org/10.1109/TIE.2019.2945265
- Dai, J., Li, Y., He, K. and Sun, J. (2016), "R-FCN: Object detection via region-based fully convolutional networks", Adv. Neural Inform. Process. Syst., 2016, 29.
- Dais, D., Bal, I.E., Smyrou, E. and Sarhosis, V. (2021), "Automatic crack classification and segmentation on masonry surfaces using convolutional neural networks and transfer learning", Automat. Constr., 125(4), 1-18. https://doi.org/10.1016/j.autcon.2021.103606
- Deng, J., Lu, Y. and Lee, V.C.S. (2020), "Imaging-based crack detection on concrete surfaces using You Only Look Once network", Struct. Health Monitor., 20(2), 147592172093848.
- Dorafshan, S., Thomas, R.J. and Maguire, M. (2018), "Comparison of deep convolutional neural networks and edge detectors for image-based crack detection in concrete", Constr. Build. Mater., 186, 1031-1045. https://doi.org/10.1016/j.conbuildmat.2018.08.011
- Gehri, N., Mata-Falcon, J. and Kaufmann, W. (2020), "Automated crack detection and measurement based on digital image correlation", Constr. Build. Mater., 256, 119383. https://doi.org/10.1016/j.conbuildmat.2020.119383
- Girshick, R. (2015), "Fast R-CNN", IEEE International Conference on Computer Vision, Santiago, Chile, December, pp. 1440-1448.
- Guo, L., Li, R., Jiang, B. and Shen, X. (2020), "Automatic crack distress classification from concrete surface images using a novel deep-width network architecture", Neurocomput., 397, 383-392. https://doi.org/10.1016/j.neucom.2019.08.107
- Hu, W., Wang, W., Ai, C., Wang, J., Wang, W., Meng, X., Liu, J., Tao, H. and Qiu, S. (2021), "Machine vision-based surface crack analysis for transportation infrastructure", Automat. Constr., 132, 103973. https://doi.org/10.1016/j.autcon.2021.103973
- Jang, K., An, Y.K., Kim, B. and Cho, S. (2021), "Automated crack evaluation of a high-rise bridge pier using a ring-type climbing robot", Comput.-Aided Civil Infrastr. Eng., 36, 14-29. https://doi.org/10.1111/mice.12550
- Ji, A., Xue, X., Wang, Y., Luo, X. and Xue, W. (2020), "An integrated approach to automatic pixel-level crack detection and quantification of asphalt pavement", Automat. Constr., 114, 103176. https://doi.org/10.1016/j.autcon.2020.103176
- Ji, A., Xue, X., Wang, Y., Luo, X. and Wang, L. (2021), "Image-based road crack risk-informed assessment using a convolutional neural network and an unmanned aerial vehicle", Struct. Control Health Monitor., 28(7), p. e2749. https://doi.org/10.1002/stc.2749
- Jiang, Y., Han, S. and Bai, Y. (2021), "Building and infrastructure defect detection and visualization using drone and deep learning technologies", J. Perform. Constr. Facil., 35(6), 04021092. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001652
- Jin, S., Lee, S.E. and Hong, J.W. (2020), "A vision-based approach for autonomous crack width measurement with flexible kernel", Automat. Constr., 110, 103019. https://doi.org/10.1016/j.autcon.2019.103019
- Jung, H.J., Lee, J.H., Yoon, S. and Kim, I.H. (2019), "Bridge Inspection and condition assessment using Unmanned Aerial Vehicles (UAVs): Major challenges and solutions from a practical perspective", Smart Struct. Syst., Int. J., 24(5), 669-681. https://doi.org/10.12989/sss.2019.24.5.669
- Kang, D.H. and Cha, Y.J. (2022), "Efficient attention-based deep encoder and decoder for automatic crack segmentation", Struct. Health Monitor., 21(5), 2190-2205. https://doi.org/10.1177/14759217211053776
- Kang, D., Benipal, S.S., Gopal, D.L. and Cha, Y.J. (2020), "Hybrid pixel-level concrete crack segmentation and quantification across complex backgrounds using deep learning", Automat. Constr., 118, 103291. https://doi.org/10.1016/j.autcon.2020.103291
- Kim, H., Ahn, E., Cho, S., Shin, M. and Sim, S.H. (2017), "Comparative analysis of image binarization methods for crack identification in concrete structures", Cement Concrete Res., 99, 53-61. https://doi.org/10.1016/j.cemconres.2017.04.018
- Kim, H., Lee, J., Ahn, E., Cho, S., Shin, M. and Sim, S.H. (2017), "Concrete crack identification using a UAV incorporating hybrid image processing", Sensors, 17(9), p. 2052. https://doi.org/10.3390/s17092052
- Lee, J.S., Hwang, S.H., Choi, I.Y. and Choi, Y. (2020), "Estimation of crack width based on shape sensitive kernels and semantic segmentation", Struct. Control Health Monit., 27(4), e2504. https://doi.org/10.1002/stc.2504
- Liang, X., Du, X., Wang, G. and Han, Z. (2019), "A deep reinforcement learning network for traffic light cycle control", IEEE Transact. Vehicul. Technol., 68(2), 1243-1253. https://doi.org/10.1109/TVT.2018.2890726
- Liu, P., Chen, A.Y., Huang, Y.N., Han, J.Y., Lai, J.S., Kang, S.C., Wu, T.H., Wen, M.C. and Tsai, M.H. (2014), "A review of rotorcraft Unmanned Aerial Vehicle (UAV) developments and applications in civil engineering", Smart Struct. Syst., Int. J., 13(6), 1065-1094. https://doi.org/10.12989/sss.2014.13.6.1065
- Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.Y. and Berg, A.C. (2016), "SSD: Single shot multibox detector", Proceedings of the 14th European Conference on Computer Vision-ECCV 2016.
- Liu, Z., Yao, C., Yu, H. and Wu, T. (2019), "Deep reinforcement learning with its application for lung cancer detection in medical Internet of Things", Future Gener. Comput. Syst., 97, 1-9. https://doi.org/10.1016/j.future.2019.02.068
- Liu, Y.F., Nie, X., Fan, J.S. and Liu, X.G. (2020), "Image-based crack assessment of bridge piers using unmanned aerial vehicles and three dimensional scene reconstruction", Comput.-Aided Civil Infrastr. Eng., 35(5), 511-529. https://doi.org/10.1111/mice.12501
- Long, J., Shelhamer, E. and Darrell, T. (2017), "Fully convolutional networks for semantic segmentation", IEEE Transact. Pattern Anal. Mach. Intell., 2015, 3431-3440.
- Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G. and Petersen, S. (2005), "Human-level control through deep reinforcement learning", Nature, 518, 529-533. https://doi.org/10.1038/nature14236
- Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D. and Riedmiller, M. (2013), "Play atari with deep reinforcement learning", arXiv preprint arXiv:1312.5602. https://doi.org/10.48550/arXiv.1312.5602
- Mocanu, E., Mocanu, D.C., Nguyen, P.H., Liotta, A., Webber, M.E., Gibescu, M. and Slootweg, J.G. (2018), "On-line building energy optimization using deep reinforcement learning", IEEE Transact. Smart Grid, 10(4), 3698-3708. https://doi.org/10.1109/TSG.2018.2834219
- Ni, F., Zhang, J. and Chen, Z. (2019), "Zernike-moment measurement of thin-crack width in images enabled by dual-scale deep learning", Comput. Aided Civil Infra., 34, 367-384. https://doi.org/10.1111/mice.12421
- Ong, J.C., Ismadi, M.Z.P. and Wang, X. (2022), "A hybrid method for pavement crack width measurement", Measurement, 197, 111260. https://doi.org/10.1016/j.measurement.2022.111260
- Park, S.E., Eem, S.H. and Jeon, H. (2020), "Concrete crack detection and quantification using deep learning and structured light", Constr. Build. Mater., 252. https://doi.org/10.1016/j.conbuildmat.2020.119096
- Payab, M., Abbasina, R. and Khanzadi, M. (2018), "A brief review and a new graph-based image analysis for concrete crack quantification", Arch. Computat. Methods Eng., 26, 347-365. https://doi.org/10.1007/s11831-018-9263-6
- Peng, X., Zhong, X., Zhao, C., Chen, A. and Zhang, T. (2021), "A UAV-based machine vision method for bridge crack recognition and width quantification through hybrid feature learning", Constr. Build. Mater., 299, 123896. https://doi.org/10.1016/j.conbuildmat.2021.123896
- Ribeiro, D., Santos, R., Shibasaki, A., Montenegro, P., Carvalho, H. and Calcada, R. (2020), "Remote inspection of RC structures using unmanned aerial vehicles and heuristic image processing", Eng. Fail. Anal., 117, 104813. https://doi.org/10.1016/j.engfailanal.2020.104813
- Redmon, J. and Farhadi, A. (2018), "Yolov3: An incremental improvement", arXiv preprint arXiv:1804.02767. https://doi.org/10.48550/arXiv.1804.02767
- Ren, Y., Huang, J., Hong, Z., Lu, W., Yin, J., Zou, L. and Shen, X. (2020), "Image-based concrete crack detection in tunnels using deep fully convolutional networks", Constr. Build. Mater., 234, 117367. https://doi.org/10.1016/j.conbuildmat.2019.117367
- Ronneberger, O., Fischer, P. and Brox, T. (2015), "U-net: Convolutional networks for biomedical image segmentation", Proceedings of the 18th International Conference Medical Image Computing and Computer-Assisted Intervention- MICCAI 2015.
- Shan, B., Zheng, S. and Ou, J. (2015), "A stereovision-based crack width detection approach for concrete surface assessment", KSCE J. Civil Eng., 20, 803-812. https://doi.org/10.1007/s12205-015-0461-6
- Song, Y., Huang, Z., Shen, C., Shi, H. and Lange, D.A. (2020), "Deep learning-based automated image segmentation for concrete petrographic analysis", Cement Concrete Res., 135, 106118. https://doi.org/10.1016/j.cemconres.2020.106118
- Song, L., Sun, H., Liu, J., Yu, Z. and Cui, C. (2022), "Automatic segmentation and quantification of global cracks in concrete structures based on deep learning", Measurement, 199, 111550. https://doi.org/10.1016/j.measurement.2022.111550
- Sony, S., Dunphy, K., Sadhu, A. and Capretz, M. (2021), "A systematic review of convolutional neural network-based structural condition assessment techniques", Eng. Struct., 226(1), 111347. https://doi.org/10.1016/j.engstruct.2020.111347
- Tang, Y., Huang, Z., Chen, Z., Chen, M., Zhou, H., Zhang, H. and Sun, J. (2023), "Novel visual crack width measurement based on backbone double-scale features for improved detection automation", Eng. Struct., 274, 115158. https://doi.org/10.1016/j.engstruct.2022.115158
- Wang, W., Zhang, A., Wang, K.C., Braham, A.F. and Qiu, S. (2018), "Pavement crack width measurement based on Laplace's equation for continuity and unambiguity", Comput.-Aided Civil Infrastr. Eng., 33(2), 110-123. https://doi.org/10.1111/mice.12319
- Wiering, M.A., Van Hasselt, H., Pietersma, A.D. and Schomaker, L. (2011), "Reinforcement learning algorithms for solving classification problems", Proceedings of 2011 IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning (ADPRL), Paris, France, April, pp. 91-96. https://doi.org/10.1109/ADPRL.2011.5967372
- Yao, L., Dong, Q., Jiang, J. and Ni, F. (2020), "Deep reinforcement learning for long-term pavement maintenance planning", Comput.-Aided Civil Infrastr. Eng., 35, 1230-1245. https://doi.org/10.1111/mice.12558
- Zhong, X., Peng, X., Yan, S., Shen, M. and Zhai, Y. (2018), "Assessment of the feasibility of detecting concrete cracks in images acquired by unmanned aerial vehicles", Automat. Constr., 89, 49-57. https://doi.org/10.1016/j.autcon.2018.01.005
- Zhong, X., Peng, X., Chen, A., Zhao, C., Liu, C. and Chen, Y.F. (2021), "Debonding defect quantification method of building decoration layers via UAV-thermography and deep learning", Smart Struct. Syst., Int. J., 28(1), 55-67. https://doi.org/10.12989/sss.2021.28.1.055
- Zhou, Y. and Liu, T. (2019), "Computer vision-based crack detection and measurement on concrete structure", J. Tongji Univ.: Natural Sci., 47(9), 1277-1285. https://doi.org/10.11908/j.issn.0253-374x.2019.09.007