DOI QR코드

DOI QR Code

A fast and simplified crack width quantification method via deep Q learning

  • Xiong Peng (Hunan University of Science and Technology) ;
  • Kun Zhou (Hunan University of Science and Technology) ;
  • Bingxu Duan (Hunan University of Science and Technology) ;
  • Xingu Zhong (Hunan University of Science and Technology) ;
  • Chao Zhao (Hunan University of Science and Technology) ;
  • Tianyu Zhang (Hunan University of Science and Technology)
  • 투고 : 2022.05.13
  • 심사 : 2023.09.26
  • 발행 : 2023.10.25

초록

Crack width is an important indicator to evaluate the health condition of the concrete structure. The crack width is measured by manual using crack width gauge commonly, which is time-consuming and laborious. In this paper, we have proposed a fast and simplified crack width quantification method via deep Q learning and geometric calculation. Firstly, the crack edge is extracted by using U-Net network and edge detection operator. Then, the intelligent decision of is made by the deep Q learning model. Further, the geometric calculation method based on endpoint and curvature extreme point detection is proposed. Finally, a case study is carried out to demonstrate the effectiveness of the proposed method, achieving high precision in the real crack width quantification.

키워드

과제정보

This study is supported by National Natural Science Foundation of China (Grant No. 51678235) and the Natural Science Foundation of Hunan Province (2020JJ5195), to which the authors are grateful.

참고문헌

  1. Ali, R., Kang, D., Suh, G. and Cha, Y.J. (2021), "Real-time multiple damage mapping using autonomous UAV and deep faster region-based neural networks for GPS-denied structures", Automat. Constr., 130(2), 103831. https://doi.org/10.1016/j.autcon.2021.103831
  2. Bertelsen, I.M.G., Kragh, C., Cardinaud, G., Ottosen, L.M. and Fischer, G. (2019), "Quantification of plastic shrinkage cracking in mortars using digital image correlation", Cement Concrete Res., 123, 105761. https://doi.org/10.1016/j.cemconres.2019.05.006
  3. Bochkovskiy, A., Wang, C.Y. and Liao, H.Y.M. (2020), "Yolov4: Optimal speed and accuracy of object detection", arXiv preprint arXiv:2004.10934, 2020. https://doi.org/10.48550/arXiv.2004.10934
  4. Cha, Y.J., Choi, W. and Buyukozturk, O. (2017), "Deep learning- based crack damage detection using convolutional neural networks", Comput. Aided Civil Infrastr. Eng., 32(5), 361-378. https://doi.org/10.1111/mice.12263
  5. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K. and Yuille, A.L. (2016), "Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs", IEEE Transact. Pattern Anal. Mach. Intell., 40(4), 834-848. https://doi.org/10.1109/TPAMI.2017.2699184
  6. Chen, L.C., Papandreou, G., Schroff, F. and Adam, H. (2017), "Rethinking atrous convolution for semantic image segmentation", arXiv preprint arXiv:1706.05587. https://doi.org/10.48550/arXiv.1706.05587
  7. Choi, W. and Cha, Y.J. (2019), "SDDNet: Real-time crack segmentation", IEEE Transact. Industr. Electron., 67(9), 8016-8025. https://doi.org/10.1109/TIE.2019.2945265
  8. Dai, J., Li, Y., He, K. and Sun, J. (2016), "R-FCN: Object detection via region-based fully convolutional networks", Adv. Neural Inform. Process. Syst., 2016, 29.
  9. Dais, D., Bal, I.E., Smyrou, E. and Sarhosis, V. (2021), "Automatic crack classification and segmentation on masonry surfaces using convolutional neural networks and transfer learning", Automat. Constr., 125(4), 1-18. https://doi.org/10.1016/j.autcon.2021.103606
  10. Deng, J., Lu, Y. and Lee, V.C.S. (2020), "Imaging-based crack detection on concrete surfaces using You Only Look Once network", Struct. Health Monitor., 20(2), 147592172093848.
  11. Dorafshan, S., Thomas, R.J. and Maguire, M. (2018), "Comparison of deep convolutional neural networks and edge detectors for image-based crack detection in concrete", Constr. Build. Mater., 186, 1031-1045. https://doi.org/10.1016/j.conbuildmat.2018.08.011
  12. Gehri, N., Mata-Falcon, J. and Kaufmann, W. (2020), "Automated crack detection and measurement based on digital image correlation", Constr. Build. Mater., 256, 119383. https://doi.org/10.1016/j.conbuildmat.2020.119383
  13. Girshick, R. (2015), "Fast R-CNN", IEEE International Conference on Computer Vision, Santiago, Chile, December, pp. 1440-1448.
  14. Guo, L., Li, R., Jiang, B. and Shen, X. (2020), "Automatic crack distress classification from concrete surface images using a novel deep-width network architecture", Neurocomput., 397, 383-392. https://doi.org/10.1016/j.neucom.2019.08.107
  15. Hu, W., Wang, W., Ai, C., Wang, J., Wang, W., Meng, X., Liu, J., Tao, H. and Qiu, S. (2021), "Machine vision-based surface crack analysis for transportation infrastructure", Automat. Constr., 132, 103973. https://doi.org/10.1016/j.autcon.2021.103973
  16. Jang, K., An, Y.K., Kim, B. and Cho, S. (2021), "Automated crack evaluation of a high-rise bridge pier using a ring-type climbing robot", Comput.-Aided Civil Infrastr. Eng., 36, 14-29. https://doi.org/10.1111/mice.12550
  17. Ji, A., Xue, X., Wang, Y., Luo, X. and Xue, W. (2020), "An integrated approach to automatic pixel-level crack detection and quantification of asphalt pavement", Automat. Constr., 114, 103176. https://doi.org/10.1016/j.autcon.2020.103176
  18. Ji, A., Xue, X., Wang, Y., Luo, X. and Wang, L. (2021), "Image-based road crack risk-informed assessment using a convolutional neural network and an unmanned aerial vehicle", Struct. Control Health Monitor., 28(7), p. e2749. https://doi.org/10.1002/stc.2749
  19. Jiang, Y., Han, S. and Bai, Y. (2021), "Building and infrastructure defect detection and visualization using drone and deep learning technologies", J. Perform. Constr. Facil., 35(6), 04021092. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001652
  20. Jin, S., Lee, S.E. and Hong, J.W. (2020), "A vision-based approach for autonomous crack width measurement with flexible kernel", Automat. Constr., 110, 103019. https://doi.org/10.1016/j.autcon.2019.103019
  21. Jung, H.J., Lee, J.H., Yoon, S. and Kim, I.H. (2019), "Bridge Inspection and condition assessment using Unmanned Aerial Vehicles (UAVs): Major challenges and solutions from a practical perspective", Smart Struct. Syst., Int. J., 24(5), 669-681. https://doi.org/10.12989/sss.2019.24.5.669
  22. Kang, D.H. and Cha, Y.J. (2022), "Efficient attention-based deep encoder and decoder for automatic crack segmentation", Struct. Health Monitor., 21(5), 2190-2205. https://doi.org/10.1177/14759217211053776
  23. Kang, D., Benipal, S.S., Gopal, D.L. and Cha, Y.J. (2020), "Hybrid pixel-level concrete crack segmentation and quantification across complex backgrounds using deep learning", Automat. Constr., 118, 103291. https://doi.org/10.1016/j.autcon.2020.103291
  24. Kim, H., Ahn, E., Cho, S., Shin, M. and Sim, S.H. (2017), "Comparative analysis of image binarization methods for crack identification in concrete structures", Cement Concrete Res., 99, 53-61. https://doi.org/10.1016/j.cemconres.2017.04.018
  25. Kim, H., Lee, J., Ahn, E., Cho, S., Shin, M. and Sim, S.H. (2017), "Concrete crack identification using a UAV incorporating hybrid image processing", Sensors, 17(9), p. 2052. https://doi.org/10.3390/s17092052
  26. Lee, J.S., Hwang, S.H., Choi, I.Y. and Choi, Y. (2020), "Estimation of crack width based on shape sensitive kernels and semantic segmentation", Struct. Control Health Monit., 27(4), e2504. https://doi.org/10.1002/stc.2504
  27. Liang, X., Du, X., Wang, G. and Han, Z. (2019), "A deep reinforcement learning network for traffic light cycle control", IEEE Transact. Vehicul. Technol., 68(2), 1243-1253. https://doi.org/10.1109/TVT.2018.2890726
  28. Liu, P., Chen, A.Y., Huang, Y.N., Han, J.Y., Lai, J.S., Kang, S.C., Wu, T.H., Wen, M.C. and Tsai, M.H. (2014), "A review of rotorcraft Unmanned Aerial Vehicle (UAV) developments and applications in civil engineering", Smart Struct. Syst., Int. J., 13(6), 1065-1094. https://doi.org/10.12989/sss.2014.13.6.1065
  29. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.Y. and Berg, A.C. (2016), "SSD: Single shot multibox detector", Proceedings of the 14th European Conference on Computer Vision-ECCV 2016.
  30. Liu, Z., Yao, C., Yu, H. and Wu, T. (2019), "Deep reinforcement learning with its application for lung cancer detection in medical Internet of Things", Future Gener. Comput. Syst., 97, 1-9. https://doi.org/10.1016/j.future.2019.02.068
  31. Liu, Y.F., Nie, X., Fan, J.S. and Liu, X.G. (2020), "Image-based crack assessment of bridge piers using unmanned aerial vehicles and three dimensional scene reconstruction", Comput.-Aided Civil Infrastr. Eng., 35(5), 511-529. https://doi.org/10.1111/mice.12501
  32. Long, J., Shelhamer, E. and Darrell, T. (2017), "Fully convolutional networks for semantic segmentation", IEEE Transact. Pattern Anal. Mach. Intell., 2015, 3431-3440.
  33. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G. and Petersen, S. (2005), "Human-level control through deep reinforcement learning", Nature, 518, 529-533. https://doi.org/10.1038/nature14236
  34. Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D. and Riedmiller, M. (2013), "Play atari with deep reinforcement learning", arXiv preprint arXiv:1312.5602. https://doi.org/10.48550/arXiv.1312.5602
  35. Mocanu, E., Mocanu, D.C., Nguyen, P.H., Liotta, A., Webber, M.E., Gibescu, M. and Slootweg, J.G. (2018), "On-line building energy optimization using deep reinforcement learning", IEEE Transact. Smart Grid, 10(4), 3698-3708. https://doi.org/10.1109/TSG.2018.2834219
  36. Ni, F., Zhang, J. and Chen, Z. (2019), "Zernike-moment measurement of thin-crack width in images enabled by dual-scale deep learning", Comput. Aided Civil Infra., 34, 367-384. https://doi.org/10.1111/mice.12421
  37. Ong, J.C., Ismadi, M.Z.P. and Wang, X. (2022), "A hybrid method for pavement crack width measurement", Measurement, 197, 111260. https://doi.org/10.1016/j.measurement.2022.111260
  38. Park, S.E., Eem, S.H. and Jeon, H. (2020), "Concrete crack detection and quantification using deep learning and structured light", Constr. Build. Mater., 252. https://doi.org/10.1016/j.conbuildmat.2020.119096
  39. Payab, M., Abbasina, R. and Khanzadi, M. (2018), "A brief review and a new graph-based image analysis for concrete crack quantification", Arch. Computat. Methods Eng., 26, 347-365. https://doi.org/10.1007/s11831-018-9263-6
  40. Peng, X., Zhong, X., Zhao, C., Chen, A. and Zhang, T. (2021), "A UAV-based machine vision method for bridge crack recognition and width quantification through hybrid feature learning", Constr. Build. Mater., 299, 123896. https://doi.org/10.1016/j.conbuildmat.2021.123896
  41. Ribeiro, D., Santos, R., Shibasaki, A., Montenegro, P., Carvalho, H. and Calcada, R. (2020), "Remote inspection of RC structures using unmanned aerial vehicles and heuristic image processing", Eng. Fail. Anal., 117, 104813. https://doi.org/10.1016/j.engfailanal.2020.104813
  42. Redmon, J. and Farhadi, A. (2018), "Yolov3: An incremental improvement", arXiv preprint arXiv:1804.02767. https://doi.org/10.48550/arXiv.1804.02767
  43. Ren, Y., Huang, J., Hong, Z., Lu, W., Yin, J., Zou, L. and Shen, X. (2020), "Image-based concrete crack detection in tunnels using deep fully convolutional networks", Constr. Build. Mater., 234, 117367. https://doi.org/10.1016/j.conbuildmat.2019.117367
  44. Ronneberger, O., Fischer, P. and Brox, T. (2015), "U-net: Convolutional networks for biomedical image segmentation", Proceedings of the 18th International Conference Medical Image Computing and Computer-Assisted Intervention- MICCAI 2015.
  45. Shan, B., Zheng, S. and Ou, J. (2015), "A stereovision-based crack width detection approach for concrete surface assessment", KSCE J. Civil Eng., 20, 803-812. https://doi.org/10.1007/s12205-015-0461-6
  46. Song, Y., Huang, Z., Shen, C., Shi, H. and Lange, D.A. (2020), "Deep learning-based automated image segmentation for concrete petrographic analysis", Cement Concrete Res., 135, 106118. https://doi.org/10.1016/j.cemconres.2020.106118
  47. Song, L., Sun, H., Liu, J., Yu, Z. and Cui, C. (2022), "Automatic segmentation and quantification of global cracks in concrete structures based on deep learning", Measurement, 199, 111550. https://doi.org/10.1016/j.measurement.2022.111550
  48. Sony, S., Dunphy, K., Sadhu, A. and Capretz, M. (2021), "A systematic review of convolutional neural network-based structural condition assessment techniques", Eng. Struct., 226(1), 111347. https://doi.org/10.1016/j.engstruct.2020.111347
  49. Tang, Y., Huang, Z., Chen, Z., Chen, M., Zhou, H., Zhang, H. and Sun, J. (2023), "Novel visual crack width measurement based on backbone double-scale features for improved detection automation", Eng. Struct., 274, 115158. https://doi.org/10.1016/j.engstruct.2022.115158
  50. Wang, W., Zhang, A., Wang, K.C., Braham, A.F. and Qiu, S. (2018), "Pavement crack width measurement based on Laplace's equation for continuity and unambiguity", Comput.-Aided Civil Infrastr. Eng., 33(2), 110-123. https://doi.org/10.1111/mice.12319
  51. Wiering, M.A., Van Hasselt, H., Pietersma, A.D. and Schomaker, L. (2011), "Reinforcement learning algorithms for solving classification problems", Proceedings of 2011 IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning (ADPRL), Paris, France, April, pp. 91-96. https://doi.org/10.1109/ADPRL.2011.5967372
  52. Yao, L., Dong, Q., Jiang, J. and Ni, F. (2020), "Deep reinforcement learning for long-term pavement maintenance planning", Comput.-Aided Civil Infrastr. Eng., 35, 1230-1245. https://doi.org/10.1111/mice.12558
  53. Zhong, X., Peng, X., Yan, S., Shen, M. and Zhai, Y. (2018), "Assessment of the feasibility of detecting concrete cracks in images acquired by unmanned aerial vehicles", Automat. Constr., 89, 49-57. https://doi.org/10.1016/j.autcon.2018.01.005
  54. Zhong, X., Peng, X., Chen, A., Zhao, C., Liu, C. and Chen, Y.F. (2021), "Debonding defect quantification method of building decoration layers via UAV-thermography and deep learning", Smart Struct. Syst., Int. J., 28(1), 55-67. https://doi.org/10.12989/sss.2021.28.1.055
  55. Zhou, Y. and Liu, T. (2019), "Computer vision-based crack detection and measurement on concrete structure", J. Tongji Univ.: Natural Sci., 47(9), 1277-1285. https://doi.org/10.11908/j.issn.0253-374x.2019.09.007