DOI QR코드

DOI QR Code

Targetless displacement measurement of RSW based on monocular vision and feature matching

  • Yong-Soo Ha (Maritime ICT & Mobility Research Department, Korea Institute of Ocean Science & Technology) ;
  • Minh-Vuong Pham (Department of Ocean Engineering, Pukyong National University) ;
  • Jeongki Lee (Department of Ocean Engineering, Pukyong National University) ;
  • Dae-Ho Yun (Department of Ocean Engineering, Pukyong National University) ;
  • Yun-Tae Kim (Department of Ocean Engineering, Pukyong National University)
  • Received : 2023.04.28
  • Accepted : 2023.10.10
  • Published : 2023.10.25

Abstract

Real-time monitoring of the behavior of reinforced soil retaining wall (RSW) is required for safety checks. In this study, a targetless displacement measurement technology (TDMT) consisting of an image registration module and a displacement calculation module was proposed to monitor the behavior of RSW, in which facing displacement and settlement typically occur. Laboratory and field experiments were conducted to compare the measuring performance of natural target (NT) with the performance of artificial target (AT). Feature count- and location-based performance metrics and displacement calculation performance were analyzed to determine their correlations. The results of laboratory and field experiments showed that the feature location-based performance metric was more relevant to the displacement calculation performance than the feature count-based performance metric. The mean relative errors of the TDMT were less than 1.69 % and 5.50 % for the laboratory and field experiments, respectively. The proposed TDMT can accurately monitor the behavior of RSW for real-time safety checks.

Keywords

Acknowledgement

This research was supported by Korea Institute of Marine Science & Technology Promotion (KIMST) funded by the Ministry of Oceans and Fisheries, Korea (20210659), and a Technology Innovation Program (Grant KG012001951201) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea).

References

  1. Alcantarilla, P.F., Bartoli, A. and Davison, A.J. (2012), "KAZE features", In: Computer Vision-ECCV 2012: 12th European Conference on Computer Vision, Florence, Italy, October, pp. 214-227.
  2. Aldosari, M., Al-Rawabdeh, A., Bullock, D. and Habib, A. (2020), "A mobile LiDAR for monitoring mechanically stabilized earth walls with textured precast concrete panels", Remote Sens., 12, 306. https://doi.org/10.3390/rs12020306
  3. Avants, B.B., Epstein, C.L., Grossman, M. and Gee, J.C. (2008), "Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain", Med. Image Anal., 12, 26-41. https://doi.org/10.1016/j.media.2007.06.004
  4. Bathurst, R.J. and Benjamin, D.J. (1990), "Failure of a geogrid-reinforced soil wall", Transp. Res. Rec., 1288, 109-116.
  5. Benjamim, C., Bueno, B. and Zornberg, J.G. (2007), "Field monitoring evaluation of geotextile-reinforced soil-retaining walls", Geosynth. Int., 14, 100-118. https://doi.org/10.1680/gein.2007.14.2.100
  6. Chien, H.J., Chuang, C.C., Chen, C.Y. and Klette, R. (2016), "When to Use What Feature? SIFT, SURF, ORB, or A-KAZE Features for Monocular Visual Odometry", Proceedings of the IEEE International Conference on Image and Vision Computing, Palmerston North, New Zealand, November, pp. 1-6. https://doi.org/10.1109/IVCNZ.2016.7804434
  7. Choi, H.S., Cheung, J.H., Kim, S.H. and Ahn, J.H. (2011), "Structural dynamic displacement vision system using digital image processing", NDT & E Int., 44, 597-608. https://doi.org/10.1016/j.ndteint.2011.06.003
  8. Choi, I., Kim, J. and Kim, D. (2016), "A target-less vision-based displacement sensor based on image convex hull optimization for measuring the dynamic response of building structures", Sensors, 16, 2085. https://doi.org/10.3390/s16122085
  9. Chou, C.R., Frederick, B., Mageras, G., Chang, S. and Pizer, S. (2013), "2D/3D image registration using regression learning", Comput. Vis. Image Underst., 117, 1095-1106. https://doi.org/10.1016/j.cviu.2013.02.009
  10. DeTone, D., Malisiewicz, T. and Rabinovich, A. (2018), "Superpoint: Self-supervised interest point detection and description", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Salt Lake City, UT, USA, June, pp. 224-236. https://doi.org/10.1109/CVPRW.2018.00060
  11. Esmaeili, F., Varshosaz, M. and Ebadi, H. (2013), "Displacement measurement of the soil nail walls by using close range photogrammetry and introduction of CPDA method", Meas., 46, 3449-3459. https://doi.org/10.1016/j.measurement.2013.04.069
  12. Feng, D., Feng, M.Q., Ozer, E. and Fukuda, Y. (2015), "A vision-based sensor for noncontact structural displacement measurement", Sens., 15, 16557-16575. https://doi.org/10.3390/s150716557
  13. Fukuda, Y., Feng, M.Q., Narita, Y., Kaneko, S.I. and Tanaka, T. (2013), "Vision-based displacement sensor for monitoring dynamic response using robust object search algorithm", IEEE Sens. J., 13, 4725-4732. https://doi.org/10.1109/JSEN.2013.2273309
  14. Ha, Y.S., Lee, J. and Kim, Y.T. (2022), "Performance Evaluation of Feature Matching Techniques for Detecting Reinforced Soil Retaining Wall Displacement", Remote Sens., 14, 1697. https://doi.org/10.3390/rs14071697
  15. Haskins, G., Kruecker, J., Kruger, U., Xu, S., Pinto, P.A., Wood, B.J. and Yan, P. (2019), "Learning deep similarity metric for 3D MR-TRUS image registration", Int. J. Comput. Assist. Radiol. Surg., 14, 417-425. https://doi.org/10.1007/s11548-018-1875-7
  16. Huizinga, W., Poot, D.H., Guyader, J.M., Klaassen, R., Coolen, B.F., van Kranenburg, M., Van Geuns, R.J.M., Uitterdijk, A., Polfliet, M., Vandemeulebroucke, J. and Leemans, A. (2016), "PCA-based groupwise image registration for quantitative MRI", Medical Image Anal., 29, 65-78. https://doi.org/10.1016/j.media.2015.12.004
  17. Jiang, R. and Jauregui, D.V. (2010), "Development of a digital close-range photogrammetric bridge deflection measurement system", Meas., 43, 1431-1438. https://doi.org/10.1016/j.measurement.2010.08.015
  18. Jiang, X., Ma, J., Xiao, G., Shao, Z. and Guo, X. (2021), "A review of multimodal image matching: Methods and applications", Inform. Fusion, 73, 22-71. https://doi.org/10.1016/j.inffus.2021.02.012
  19. Koerner, R.M. and Koerner, G.R. (2018), "An Extended Data Base and Recommendations Regarding 320 Failed Geosynthetic Reinforced Mechanically Stabilized Earth (MSE) Walls", Geotext. Geomembr., 46, 904-912. https://doi.org/10.1016/j.geotexmem.2018.07.013
  20. Koseki, J. and Hayano, K. (2000), "Preliminary report on damage to retaining walls caused by the 1999 Chi-Chi earthquake", Bulletin of ERS, 33, 23-34.
  21. Lee, J.J. and Shinozuka, M. (2006), "Real-time displacement measurement of a flexible bridge using digital image processing techniques", Exp. Mech., 46, 105-114. https://doi.org/10.1007/s11340-006-6124-2
  22. Leonards, G.A., Frost, J.D. and Bray, J.D. (1994), "Collapse of geogrid-reinforced retaining structure", J. Perform. Constr. Facil., 8, 274-292. https://doi.org/10.1061/(ASCE)0887-3828(1994)8:4(274)
  23. Lienhart, W. (2017), "Geotechnical monitoring using total stations and laser scanners: critical aspects and solutions", J. Civil Struct. Health Monit., 7, 315-324. https://doi.org/10.1007/s13349-017-0228-5
  24. Ling, H.I., Liu, H., Kaliakin, V.N. and Leshchinsky, D. (2004), "Analyzing dynamic behavior of geosynthetic-reinforced soil retaining walls", J. Eng. Mech., 130, 911. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:8(911)
  25. Ling, H.I., Leshchinsky, D., Wang, J.P., Mohri, Y. and Rosen, A. (2009), "Seismic response of geocell retaining walls: experimental studies", J. Geotech. Geoenv. Eng., 135, 515-524. https://doi.org/10.1061/(ASCE)1090-0241(2009)135:4(515)
  26. Liu, D., Tang, Z., Bao, Y. and Li, H. (2021), "Machine-learning- based methods for output-only structural modal identification", Struct. Control Health Monitor., 28(12), e2843. https://doi.org/10.1002/stc.2843
  27. Luo, J. and Konofagou, E.E. (2010), "A fast normalized cross-correlation calculation method for motion estimation", IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 57, 1347-1357. https://doi.org/10.1109/TUFFC.2010.1554
  28. Mikolajczyk, K. and Mikolajczyk, K. (2004), "Scale & Affine Invariant Interest Point Detectors", Int. J. Comput. Vis., 60, 63-86. https://doi.org/10.1023/B:VISI.0000027790.02288
  29. Mikolajczyk, K. and Schmid, C. (2005), "A performance evaluation of local descriptors", IEEE Trans. Pattern Anal. Mach. Intell., 27, 1615-1630. https://doi.org/10.1109/TPAMI.2005.188
  30. Oats, R.C., Escobar-Wolf, R. and Oommen, T. (2017), "A novel application of photogrammetry for retaining wall assessment", Infrastruct., 2, 10. https://doi.org/10.3390/infrastructures2030010
  31. Oskouie, P., Becerik-Gerber, B. and Soibelman, L. (2016), "Automated measurement of highway retaining wall displacements using terrestrial laser scanners", Autom. Constr., 65, 86-101. https://doi.org/10.1016/j.autcon.2015.12.023
  32. Pan, B., Qian, K., Xie, H. and Asundi, A. (2009), "Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review", Meas. Sci. Technol., 20, 062001. https://doi.org/10.1088/0957-0233/20/6/062001
  33. Pan, B., Tian, L. and Song, X. (2016), "Real-time, non-contact and targetless measurement of vertical deflection of bridges using off-axis digital image correlation", Ndt & E Int., 79, 73-80. https://doi.org/10.1016/j.ndteint.2015.12.006
  34. Panah, A.K. and Yazdi, M. and Ghalandarzadeh, A. (2015), "Shaking table tests on soil retaining walls reinforced by polymeric strips", Geotext. Geomembr., 43, 148-161. https://doi.org/10.1016/j.geotexmem.2015.01.001
  35. Perona, P. and Malik, J. (1990), "Scale-space and edge detection using anisotropic diffusion", IEEE Transact. Pattern Anal. Mach. Intell., 12, 629-639. https://doi.org/10.1109/34.56205
  36. Pieropan, A., Bjorkman, M., Bergstrom, N. and Kragic, D. (2016), "Feature descriptors for tracking by detection: A benchmark", arXiv 2016, arXiv:1607.06178. https://doi.org/10.48550/arXiv.1607.06178
  37. Portelinha, F.H.M., Zornberg, J.G. and Pimentel, V. (2014), "Field performance of retaining walls reinforced with woven and nonwoven geotextiles", Geosynthe. Int., 21, 270-284. https://doi.org/10.1680/gein.14.00014
  38. Rahardjo, H., Kim, Y., Gofar, N. and Satyanaga, A. (2020), "Analyses and design of steep slope with GeoBarrier system (GBS) under heavy rainfall", Geotext. Geomembr., 48, 157-169. https://doi.org/10.1016/j.geotexmem.2019.11.010
  39. Revaud, J., Weinzaepfel, P., de Souza C.R., Pion, N., Csurka, G., Cabon, Y. and Humenberger, M. (2019), "R2D2: repeatable and reliable detector and descriptor", arXiv 2019, arXiv:1906.06195. https://doi.org/10.48550/arXiv.1906.06195
  40. Rivaz, H., Karimaghaloo, Z. and Collins, D.L. (2014), "Self-similarity weighted mutual information: a new nonrigid image registration metric", Med. Image Anal., 18, 343-358. https://doi.org/10.1016/j.media.2013.12.003
  41. Rowe, R.K. and Skinner G.D. (2001), "Numerical analysis of geosynthetic reinforced retaining wall constructed on a layered soil foundation", Geotext. Geomembr., 19, 387-412. https://doi.org/10.1016/S0266-1144(01)00014-0
  42. Shinde, A.L. and Mandal, J.N. (2007), "Behavior of reinforced soil retaining wall with limited fill zone parameter", Geotechn. Geol. Eng., 25, 657-672. https://doi.org/10.1007/s10706-007-9138-3
  43. Simonovsky, M., Gutierrez-Becker, B., Mateus, D., Navab, N. and Komodakis, N. (2016), "A deep metric for multimodal registration", Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 10-18.
  44. Tareen, S.A.K. and Saleem, Z.A. (2018), "Comparative Analysis of SIFT, SURF, KAZE, AKAZE, ORB, and BRISK", Proceedings of the 2018 IEEE International Conference on Computing, Mathematics and Engineering Technologies (iCoMET), Sukkur, Pakistan, March, pp. 1-10. https://doi.org/10.1109/ICOMET.2018.8346440
  45. Wang, J., Zhao, J., Liu, Y. and Shan, J. (2021), "Vision-based displacement and joint rotation tracking of frame structure using feature mix with single consumer-grade camera", Struct. Control Health Monit., 28, e2832. https://doi.org/10.1002/stc.2832
  46. Weidong, H., Xinnian, Z., Xiaohong, L., Yongqing, Z. and Xiyu, Z. (2020), "Active earth pressure against cantilever retaining wall adjacent to existing basement exterior wall", Int. J. Geomech., 20, 04020207. https://doi.org/10.1061/(ASCE)GM.1943-5622.000185
  47. Yi, K.M., Trulls, E., Lepetit, V. and Fua, P. (2016), "Lift: Learned Invariant Feature Transform", In: European Conference on Computer Vision, Cham, Switzerland, pp. 467-483. https://doi.org/10.1007/978-3-319-46466-4_28
  48. Yoo, C. and Jung, H.S. (2004), "Measured behavior of a geosynthetic-reinforced segmental retaining wall in a tiered configuration", Geotext. Geomembr., 22, 359-376. https://doi.org/10.1016/S0266-1144(03)00064-5
  49. Yoo, C. and Jung, H.Y. (2006), "Case history of geosynthetic reinforced segmental retaining wall failure", J. Geotech. Geoenviron. Eng., 132, 1538-1548. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:12(1538)
  50. Zhao, S., Kang, F. and Li, J. (2018), "Displacement monitoring for slope stability evaluation based on binocular vision systems", Optik, 171, 658-671. https://doi.org/10.1016/j.ijleo.2018.06.097