DOI QR코드

DOI QR Code

Acoustic emission localization in concrete using a wireless air-coupled monitoring system

  • Yunshan Bai (Chongqing Key Laboratory of Geomechanics & Geoenvironmental Protection, Department of Military Installations, Army Logistics Academy of PLA) ;
  • Yuanxue Liu (Chongqing Key Laboratory of Geomechanics & Geoenvironmental Protection, Department of Military Installations, Army Logistics Academy of PLA) ;
  • Guangjian Gao (Department Basic Department, Army Logistics Academy of PLA) ;
  • Shuang Su (Department Basic Department, Army Logistics Academy of PLA)
  • Received : 2022.03.10
  • Accepted : 2023.03.16
  • Published : 2023.10.25

Abstract

The contact acoustic emission (AE) monitoring system is time-consuming and costly for monitoring concrete structures in large scope, in addition, the great difference in acoustic impedance between air and concrete makes the detection process inconvenient. In this work, we broaden the conventional AE source localization method for concrete to the non-contact (air-coupled) micro-electromechanical system (MEMS) microphones array, which collects the energy-rich leaky Rayleigh waves, instead of the relatively weak P-wave. Finite element method was used for the numerical simulations, it is shown that the propagation velocity of leaky Rayleigh waves traveling along the air-concrete interface agrees with the corresponding theoretical properties of Lamb wave modes in an infinite concrete slab. This structures the basis for implementing a non-contact AE source location approach. Based on the experience gained from numerical studies, experimental studies on the proposed air-coupled AE source location in concrete slabs are carried out. Finally, it is shown that the locating map of AE source can be determined using the proposed system, and the accuracy is sufficient for most field monitoring applications on large plate-like concrete structures, such as tunnel lining and bridge deck.

Keywords

Acknowledgement

This work was supported by the National Natural Science Foundation of China (No. 41877219 and 12274463); Chongqing Research Program of Basic Research and Frontier Technology (No. cstc2015jcyjBX0073); Natural Science Foundation of Chongqing (No. cstc2019jcyj msxmX0585); Chongqing Graduate Student Research Innovation Project (No. CYB21248); and the Scientific and Technological Research Program of Chongqing Municipal Education Commission (KJQN202012901).

References

  1. Aggelis, D.G. and Matikas, T.E. (2012), "Effect of plate wave dispersion on the acoustic emission parameters in metals", Comput. Struct., 98-99, 17-22. https://doi.org/10.1016/j.compstruc.2012.01.014
  2. Banjara, N.K., Sasmal, S. and Srinivas, V. (2019), "Damage progression study in fibre reinforced concrete using acoustic emission technique", Smart Struct. Syst., Int. J., 23(2), 173-184. https://doi.org/10.12989/sss.2019.23.2.173
  3. Carpinteri, A., Lacidogna, G., Corrado, M. and Battista, E.D. (2016), "Cracking and crackling in concrete-like materials: A dynamic energy balance", Eng. Fract. Mech., 155, 130-144. https://doi.org/10.1016/j.engfracmech.2016.01.013
  4. Chen, J., Wu, Y. and Yang, C. (2019), "Damage assessment of concrete using a non-contact nonlinear wave modulation technique", NDT & E International, 106(SEP.), 1-9. https://doi.org/10.1016/j.ndteint.2019.05.004
  5. Du, F., Li, D.S. and Qiu, D. (2021), "Cluster analysis and damage identification for FRP/steel-confined RC column using AE technique", Smart Struct. Syst., Int. J., 27(3), 407-419. https://doi.org/10.12989/sss.2021.27.3.407
  6. Ferguson, B.G., Criswick, L.G. and Lo, K.W. (2002), "Locating far-field impulsive sound sources in air by triangulation", J. Acoust. Soc. Am., 111(1), 104-116. https://doi.org/10.1121/1.1402618
  7. Hsu, N.N. (1977), Acoustic emissions simulator, US Patent; US4018084.
  8. Kaczmarek, M., Piwakowski, B. and Drelich, R. (2017), "Noncontact ultrasonic nondestructive techniques: state of the art and their use in civil engineering", J. Infrastr. Syst., 23(1), B4016003. https://doi.org/10.1061/(ASCE)IS.1943-555X.0000312
  9. Kuang, K.S.C., Li, D. and Koh, C.G. (2016), "Acoustic emission source location and noise cancellation for crack detection in rail head", Smart Struct. Syst., Int. J., 18(5), 1063-1085. https://doi.org/10.12989/sss.2016.18.5.1063
  10. Li, D., Shao, J., Ou, J. and Wang, Y. (2017), "Damage analysis of carbon nanofiber modified flax fiber composite by acoustic emission", Smart Struct. Syst., Int. J., 19(2), 127-136. https://doi.org/10.12989/sss.2017.19.2.127
  11. McLaskey, G.C., Glaser, S.D. and Grosse, C.U. (2010), "Beamforming array techniques for acoustic emission monitoring of large concrete structures", J. Sound Vib., 329(12), 2384-2394. https://doi.org/10.1016/j.jsv.2009.08.037
  12. Ongpeng, J.M.C., Oreta, A.W.C. and Hirose, S. (2018), "Contact and noncontact ultrasonic nondestructive test in reinforced concrete beam", Adv. Civil Eng., 2018, 5783175. https://doi.org/10.1155/2018/5783175
  13. Park, C.B., Miller, R.D. and Xia, J. (1998), "Imaging dispersion curves of surface waves on multi-channel record", SEG Technical Program Expanded Abstracts 1998, 1377-1380. https://doi.org/10.1190/1.1820161
  14. Plona, T.J., Mayer, W.G. and Behravesh, M. (1975), "Rayleigh and Lamb waves at liquid-solid boundaries", Ultrasonics, 13(4), 171-175. https://doi.org/10.1016/0041-624X(75)90086-4
  15. Qiu, Q. and Lau, D. (2021), "Defect detection of FRP-bonded civil structures under vehicle-induced airborne noise", Mech. Syst. Signal Process., 146, 106992. https://doi.org/10.1016/j.ymssp.2020.106992
  16. Redwood, M. (1967), "Rayleigh and Lamb waves", Ultrasonics, 5(4), 260-260. https://doi.org/10.1016/0041-624X(67)90079-0
  17. Sedlak, P., Hirose, Y. and Enoki, M. (2013), "Acoustic emission localization in thin multi-layer plates using first-arrival determination", Mech. Syst. Signal Process., 36(2), 636-649. https://doi.org/10.1016/j.ymssp.2012.11.008
  18. Shahidan, S., Pulin, R., Bunnori, N.M. and Holford, K.M. (2013), "Damage classification in reinforced concrete beam by acoustic emission signal analysis", Constr. Build. Mater., 45, 78-86. https://doi.org/10.1016/j.conbuildmat.2013.03.095
  19. Wang, X., Liu, X., He, T., Tai, J. and Shan, Y. (2020), "A novel joint localization method for acoustic emission source based on time difference of arrival and beamforming", Appl. Sci., 10(22), 8045. https://doi.org/10.3390/app10228045
  20. Xiao, D., He, T., Pan, Q., Liu, X., Wang, J. and Shan, Y. (2014), "A novel acoustic emission beamforming method with two uniform linear arrays on plate-like structures", Ultrasonics, 54(2), 737-745. https://doi.org/10.1016/j.ultras.2013.09.020