DOI QR코드

DOI QR Code

Use of waste steel fibers from CNC scraps in shear-deficient reinforced concrete beams

  • Ilker Kalkan (Department of Civil Engineering, Kirikkale University) ;
  • Yasin Onuralp Ozkilic (Department of Civil Engineering, Necmettin Erbakan University) ;
  • Ceyhun Aksoylu (Department of Civil Engineering, Konya Technical University) ;
  • Md Azree Othuman Mydin (School of Housing, Building and Planning, Universiti Sains Malaysia) ;
  • Carlos Humberto Martins (Department of Civil Engineering, State University of Maringa) ;
  • Ibrahim Y. Hakeem (Civil Engineering Department, College of Engineering, Najran University) ;
  • Ercan Isik (Department of Civil Engineering, Bitlis Eren University) ;
  • Musa Hakan Arslan (Department of Civil Engineering, Konya Technical University)
  • 투고 : 2023.01.17
  • 심사 : 2023.10.04
  • 발행 : 2023.10.25

초록

The present paper summarizes the results of an experimental program on the influence of using waste lathe scraps in the concrete mixture on the shear behavior of RC beams with different amounts of shear reinforcement. Three different volumetric ratios (1, 2 and %3) for the scraps and three different stirrup spacings (160, 200 and 270 mm) were adopted in the tests. The shear span-to-depth ratios of the beams were 2.67 and the stirrup spacing exceeded the maximum spacing limit in the building codes to unfold the contribution of lathe scraps to the shear resistances of shear-deficient beams, subject to shear-dominated failure (shear-tension). The experiments depicted that the lathe scraps have a pronounced contribution to the shear strength and load-deflection behavior of RC beams with widely-spaced stirrups. Namely, with the addition of 1%, 2% and 3% waste lathe scraps, the load-bearing capacity escalated by 9.1%, 21.8% and 32.8%, respectively, compared to the reference beam. On the other hand, the contribution of the lathe scraps to the load capacity decreases with decreasing stirrup spacing, since the closely-spaced stirrups bear the shear stresses and render the contribution of the scraps to shear resistance insignificant. The load capacity, deformation ductility index (DDI) and modulus of toughness (MOT) values of the beams were shown to increase with the volumetric fraction of scraps if the stirrups are spaced at about two times the beam depth. For the specimens with a stirrup spacing of about the beam depth, the scraps were found to have no considerable contribution to the load capacity and the deformation capacity beyond the ultimate load. In other words, for lathe scrap contents of 1-3%, the DDI values increased by 5-23% and the MOT values by 63.5-165% with respect to the reference beam with a stirrup spacing of 270 mm. The influence of the lathe scraps to the DDI and MOT values were rather limited and even sometimes negative for the stirrup spacing values of 160 and 200 mm.

키워드

과제정보

The authors are thankful to the Deanship of Scientific Research under supervision of the Science and Engineering Research Center at Najran University for funding this work under the research centers funding program with grant (NU/RCP/SERC/12/4)

참고문헌

  1. ACI 318-19 (2019), Building Code Requirements for Structural Concrete and Commentary; , Farmington Hills, MI, USA.
  2. ACI 318M-14 (2014), Building Code Requirements for Structural Concrete (ACI 318M-14) and Commentary on Building Code Requirements for Structural Concrete (ACI 318RM-14), American Concrete Institute, Farmington Hills, MI.
  3. Abbas, A. (2011), "Management of steel solid waste generated from lathes as fiber reinforced concrete", Eur. J. Sci. Res., 50, 481-485.
  4. Ahdal, A.Q., Amrani, M.A., Ghaleb, A.A., Abadel, A.A., Alghamdi, H., Alamri, M., Wasim, M. and Shameeri, M. (2022), "Mechanical performance and feasibility analysis of green concrete prepared with local natural zeolite and waste PET plastic fibers as cement replacements", Case Studies Construct. Mater., 17, e01256. https://doi.org/10.1016/j.cscm.2022.e01256.
  5. Akshaya, T., Manikandan, G., Baby, J.E. and Jaambavi, I. (2021), "Experimental study on bending behaviour of fibre reinforced concrete by using lathe waste fiber", Mater. Today: Proceedings. https://doi.org/10.1016/j.matpr.2021.03.324
  6. Alvarado, Y.A., Torres, B., Buitrago, M., Ruiz1c, D.M., Torres, S.Y. and A lvarez1e, R.A. (2022), "Dynamic punching shear tests of flat slab-column joints with 5D steel fibers", Struct. Eng. Mech., 81(3), 281-292. https://doi.org/10.12989/sem.2022.81.3.281.
  7. Ansari, M. and Safiey, A. (2020), "Corrosion effects on mechanical behavior of steel fiber reinforced concrete, including fibers from recycled tires", Comput. Concrete, 26(4), 367-375. https://doi.org/10.12989/cac.2020.26.4.367.
  8. Arafa, D.F. and Moawad, M. (2023), "R Shear behavior of reinforced fiber concrete beam using steel lathe scrap waste and end hooked steel fiber", Key Eng. Mater., Ahead of print, Published 19 May 2023.
  9. Ashok, S.P., Suman, S. and Chincholkar, N. (2012), "Reuse of steel scarp from lathe machine as reinforced material to enhance properties of concrete", Glob. J. Eng. Appl. Sci., 2, 164-167.
  10. Basaran, B., Aksoylu, C., Ozkilic, Y.O., Karalar, M. and Hakamy, A. (2023), "Shear behaviour of reinforced concrete beams utilizing waste marble powder", Structures, 54, 1090-1100. https://doi.org/10.1016/j.istruc.2023.05.093
  11. Bengar, H.A., Kiadehi, M.A., Shayanfar, J. and Nazari, M. (2020), "Effective flexural rigidities for RC beams and columns with steel fiber", Steel Compos. Struct., 34(3), 453-465. https://doi.org/10.12989/scs.2020.34.3.453.
  12. Birincioglu, M.I., Keskin, R.S.O. and Arslan, G. (2022), "Shear strength of steel fiber reinforced concrete deep beams without stirrups", Adv. Concrete Construct.. 13(1), 1-10. https://doi.org/10.12989/acc.2022.13.1.001.
  13. Caggiano, A., Folino, P., Lima, C., Martinelli, E. and Pepe, M. (2017), "On the mechanical response of hybrid fiber reinforced concrete with recycled and industrial steel fibers", Construct. Build. Mater., 147, 286-295. https://doi.org/10.1016/j.conbuildmat.2017.04.160.
  14. Cai, J., Pan, J., Li, G. and Elchalakani, M. (2023), "Behaviors of eccentrically loaded ECC-encased CFST columns after fire exposure", Eng. Struct., 289, 116258. https://doi.org/10.1016/j.engstruct.2023.116258.
  15. Chang, Q., Liu, L., Farooqi, M.U., Thomas, B. and Ozkilic, Y.O. (2023), "Data-driven based estimation of waste-derived ceramic concrete from experimental results with its environmental assessment", J. Mater. Ress. Technol., 24, 6348-6368. https://doi.org/10.1016/j.jmrt.2023.04.223
  16. Celik, A.I., Ozkilic, Y.O., Zeybek, O., Ozdoner, N. and Tayeh, B.A. (2022), "Performance assessment of fiber-reinforced concrete produced with waste lathe fibers", Sustainability. 14(19), 11817. https://doi.org/10.3390/su141911817.
  17. Celik, A.I., Tunc, U., Bahrami, A., Karalar, M., Mydin, M.A.O., Alomayri, T. and Ozkilic, Y.O. (2023), "Use of waste glass powder toward more sustainable geopolymer concrete", J. Mater. Res. Technol., 24, 8533-8546. https://doi.org/10.1016/j.jmrt.2023.05.094
  18. Code, P. (2005), "Eurocode 8: Design of structures for earthquake resistance-part 1: general rules, seismic actions and rules for buildings", Brussels: European Committee for Standardization.
  19. de Alencar Monteiro, V.M., Cardoso, D.C.T. and de Andrade Silva, F. (2023), "A novel methodology for estimating damage evolution and energy dissipation for steel fiber reinforced concrete under flexural fatigue loading", Int. J. Fatigue, 166, 107244. https://doi.org/10.1016/j.ijfatigue.2022.107244.
  20. Dharmaraj, R. (2021), "Experimental study on strength and durability properties of iron scrap with fly ash based concrete", Mater. Today: Proceedings. 37, 1041-1045. https://doi.org/10.1016/j.matpr.2020.06.290
  21. Eisa, A.S., Shehab, H.K., El-Awady, K.A. and Nawar, M.T. (2021), "Improving the flexural toughness behavior of RC beams using micro/nano silica and steel fibers", Adv. Concrete Construct., 11(1), 45-58. https://doi.org/10.12989/acc.2021.11.1.045.
  22. El-Sayed, T.A. (2019), "Flexural behavior of RC beams containing recycled industrial wastes as steel fibers", Construct. Build. Mater., 212, 27-38. https://doi.org/10.1016/j.conbuildmat.2019.03.311.
  23. Elsayed, M., Tayeh, B.A. and Kamal, D. (2021a), "Effect of crumb rubber on the punching shear behaviour of reinforced concrete slabs with openings", Construct. Build. Mater., 311, 125345. https://doi.org/10.1016/j.conbuildmat.2021.125345.
  24. Elsayed, M., Tayeh, B.A., Mohamed, M., Elymany, M. and Mansi, A.H. (2021b), "Punching shear behaviour of RC flat slabs incorporating recycled coarse aggregates and crumb rubber", J. Build. Eng., 44, 103363. https://doi.org/10.1016/j.jobe.2021.103363.
  25. Fayed, S. and Mansour, W. (2020), "Evaluate the effect of steel, polypropylene and recycled plastic fibers on concrete properties", Adv. Concrete Construct., 10(4), 319-332. https://doi.org/10.12989/acc.2020.10.4.319.
  26. Fayed, S., Madenci, E., O zkilic, Y.O. and Mansour, W. (2023), "Improving bond performance of ribbed steel bars embedded in recycled aggregate concrete using steel mesh fabric confinement", Construct. Build. Mater., 369, 130452.
  27. Gawatre, D.W., Haldkar, P., Nanaware, S., Salunke, A., Shaikh, M. and Patil, A. (2016), "Study on addition of lathe scrap to improve the mechanical properties of concrete", Int. J. Innovat. Res. Sci. Eng. Technol., 5, 8573-8578.
  28. Guo, M., Huang, H., Zhang, W., Xue, C. and Huang, M. (2022), "Assessment of RC frame capacity subjected to a loss of corner column", J. Struct. Eng., 148(9). https://doi.org/10.1061/(ASCE)ST.1943-541X.0003423.
  29. Huang, H., Yuan, Y., Zhang, W. and Zhu, L. (2021), "Property assessment of high-performance concrete containing three types of fibers", Int. J. Concrete Struct. Mater., 15(1), 39. https://doi.org/10.1186/s40069-021-00476-7.
  30. Huang, H., Guo, M., Zhang, W. and Huang, M. (2022), "Seismic behavior of strengthened RC columns under combined loadings", J. Bridge Eng., 27(6). https://doi.org/10.1061/(ASCE)BE.1943-5592.0001871.
  31. Ibrahim, A.E., Mohammed, H.J., Lateef, A.M. and Fayyadh, M.M. (2023), "Performance and behavior of RC beams containing recycled lathe waste", Int. Rev. Civil Eng., 14(3), 22806.
  32. Madenci, E., Fayed, S., Mansour, W. and Ozkilic, Y.O. (2022), "Buckling performance of pultruded glass fiber reinforced polymer profiles infilled with waste steel fiber reinforced concrete under axial compression", Steel Compos. Struct., 45(5), 652-663. https://doi.org/10.12989/scs.2022.45.5.652.
  33. Karalar, M., Ozkilic, Y.O., Deifalla, A.F., Aksoylu, C., Arslan, M.H., Ahmad, M. and Sabri, M.M.S. (2022), "Improvement in bending performance of reinforced concrete beams produced with waste lathe scraps", Sustainability. 14(19), 12660. https://doi.org/10.3390/su141912660.
  34. Kumar, D.P., Gladson, G.J.N., Chandramauli, A., Uma, B., Sunagar, P. and Jeelani, S.H. (2022), "Influence of reinforcing waste steel scraps on the strength of concrete", Mater. Today: Proceedings.
  35. Kumaran, M., Nithi, M. and Reshma, K. (2015), "Effect of lathe waste in concrete as reinforcement", Int. J. Res. Adv. Technol. 6 78-83.
  36. Maanvit, P.S., Prasad, B.P., Vardhan, M.H., Jagarapu, D.C. and Eluru, A. (2019), "Experimental examination of fiber reinforced concrete incorporation with lathe steel scrap", IJITEE. 9, 3729-3732. https://doi.org/10.35940/ijitee.B6692.129219
  37. Madenci, E., Fayed, S., Mansour, W. and Ozkilic, Y.O. (2022), "Buckling performance of pultruded glass fiber reinforced polymer profiles infilled with waste steel fiber reinforced concrete under axial compression", Steel Compos. Struct., 45(5), 653-663.
  38. Malek, M., Jackowski, M., Lasica, W. and Kadela, M. (2021), "Influence of polypropylene, glass and steel fiber on the thermal properties of concrete", Materials. 14(8), 1888. https://doi.org/10.3390/ma14081888.
  39. Malek, M., Kadela, M., Terpilowski, M., Szewczyk, T., Lasica, W. and Muzolf, P. (2021), "Effect of metal lathe waste addition on the mechanical and thermal properties of concrete", Materials. 14(11), 2760.
  40. Malek, M., Lasica, W., Jackowski, M. and Kadela, M. (2020), "Effect of waste glass addition as a replacement for fine aggregate on properties of mortar", Materials. 13(14), 3189. https://doi.org/10.3390/ma15238499.
  41. Manaswini, C. and Vasu, D. (2015), "Fibre reinforced concrete from industrial waste-a review", Int. J. Innov. Res. Sci., Eng. Technol., 4(12), 11751-11758. https://doi.org/10.15680/IJIRSET.2015.0412013
  42. Mansour, W. and Fayed, S. (2021), "Flexural rigidity and ductility of RC beams reinforced with steel and recycled plastic fibers", Steel Compos. Struct., 41(3), 317-334. https://doi.org/10.12989/scs.2021.41.3.317.
  43. Mansouri, I., Shahheidari, F.S., Hashemi, S.M.A. and Farzampour, A. (2020), "Investigation of steel fiber effects on concrete abrasion resistance", Adv. Concrete Construct., 9(4), 367-374. https://doi.org/10.12989/acc.2020.9.4.367.
  44. Minchenkov, K., Vedernikov, A., Kuzminova, Y., Gusev, S., Sulimov, A., Gulyaev, A., Kreslavskaya, A., Prosyanoy, I., Xian, G., Akhatov, I. and Safonov, A. (2022), "Effects of the quality of pre-consolidated materials on the mechanical properties and morphology of thermoplastic pultruded flat laminates", Compos. Commun., 35, 101281.
  45. Mohammed, H.J., Abbas, A.H. and Husain, M.A. (2013), "Using of recycled rubber tires and steel lathes waste as fibbers to reinforcing concrete", Iraqi J. Civil Eng., 9(1).
  46. Moon, J., Youm, K.S., Lee, J.S. and Yun, T.S. (2022), "Flowability and mechanical characteristics of self-consolidating steel fiber reinforced ultra-high performance concrete", Steel Compos. Struct., 43(3), 389-401. https://doi.org/10.12989/scs.2022.43.3.389.
  47. Ozkilic, Y.O., Aksoylu, C. and Arslan, M.H. (2021), "Experimental and numerical investigations of steel fiber reinforced concrete dapped-end purlins", J. Build. Eng., 36, 102119. https://doi.org/10.1016/j.jobe.2020.102119.
  48. Ozkilic, Y.O., Basaran, B., Aksoylu, C., Karalar, M. and Martins, C.H. (2023), "Mechanical behavior in terms of shear and bending performance of reinforced concrete beam using waste fire clay as replacement of aggregate", Case Studies Construct. Mater., 18, e02104.
  49. Prasad, B.P., Maanvit, P.S., Jagarapu, D.C.K. and Eluru, A. (2020), "Flexural behavior of fiber reinforced concrete incorporation with lathe steel scrap", Materials Today: Proceedings. 33, 196-200. https://doi.org/10.1016/j.matpr.2020.03.793.
  50. Parashar, A.K. and Gupta, A. (2021), "Investigation of the effect of bagasse ash, hooked steel fibers and glass fibers on the mechanical properties of concrete", Materials Today: Proceedings, 44, 801-807. https://doi.org/10.1016/j.matpr.2020.10.711.
  51. Prieto, M.I., Gonzalez, M.d.l.N., Cobo, A. and Alonso, D. (2021), "Comparison of the mechanical behavior of concrete containing recycled cfrp fibers and polypropylene fibers", Appl. Sci., 11(21), 10226. https://doi.org/10.3390/app112110226.
  52. Rodriguez, J.M., Carbonell, J.M., Cante, J. and Oliver, J. (2017), "Continuous chip formation in metal cutting processes using the Particle Finite Element Method (PFEM)", Int. J. Solids Struct., 120, 81-102. https://doi.org/10.1016/j.ijsolstr.2017.04.030
  53. Sharba, A.A.K. and Ibrahim, A.J. (2020), "Evaluating the use of steel scrap, waste tiles, waste paving blocks and silica fume in flexural behavior of concrete", Innov. Infrastruct. Solut., 5, 94.
  54. Shariq, M., Pal, S., Chaubey, R. and Masood, A. (2022), "An experimental and analytical study into the strength of hooked-end steel fiber reinforced HVFA concrete", Adv. Concrete Construct., 13(1), 35-43. https://doi.org/10.12989/acc.2022.13.1.035.
  55. Shewalul, Y.W. (2021), "Experimental study of the effect of waste steel scrap as reinforcing material on the mechanical properties of concrete", Case Studies Construct. Mater., 14, e00490. https://doi.org/10.1016/j.cscm.2021.e00490.
  56. Shi, T., Liu, Y., Hu, Z., Cen, M., Zeng, C., Xu, J. and Zhao, Z. (2022), "Deformation performance and fracture toughness of carbon nanofiber-modified cement-based materials", ACI Mater. J., 119(5), 119-128. https://doi.org/10.14359/51735976.
  57. Signorini, C., Marinelli, S., Volpini, V., Nobili, A., Radi, E. and Rimini, B. (2022), "Performance of concrete reinforced with synthetic fibres obtained from recycling end-of-life sport pitches", J. Build. Eng., 53, 104522. https://doi.org/10.1016/j.jobe.2022.104522
  58. Sun, L., Wang, C., Zhang, C., Yang, Z., Li, C. and Qiao, P. (2022), "Experimental investigation on the bond performance of sea sand coral concrete with FRP bar reinforcement for marine environments", Adv. Struct. Eng., 26(3), 533-546. https://doi.org/10.1177/13694332221131153.
  59. Tang, H., Yang, Y., Li, H., Xiao, L. and Ge, Y. (2023), "Effects of chloride salt erosion and freeze-thaw cycle on interface shear behavior between ordinary concrete and self-compacting concrete", Structures, 56, 104990. https://doi.org/10.1016/j.istruc.2023.104990.
  60. Tucci, F. and Vedernikov, A. (2021), "Design criteria for pultruded structural elements", Encyclopedia of Materials: Composites. 3, 51-68. https://doi.org/10.1016/B978-0-12-819724-0.00086-0
  61. Wang, M., Yang, X. and Wang, W. (2022), "Establishing a 3D aggregates database from X-ray CT scans of bulk concrete", Construct. Build. Mater., 315, 125740. https://doi.org/10.1016/j.conbuildmat.2021.125740.
  62. Vasoya, N.K. and Varia, H.R. (2015), "Utilization of various waste materials in concrete a literature review", Int. J. Eng. Res. Technol. 4(4), 1122-1126.
  63. Vedernikov, A., Safonov, A., Tucci, F., Carlone, P. and Akhatov, I.S. (2021), "Modeling spring-in of L-shaped structural profiles pultruded at different pulling speeds", Polymers. 13(16), 2748.
  64. Vijayakumar, G., Senthilnathan, P., Pandurangan, K. and Ramakrishna, G. (2012), "Impact and energy absorption characteristics of lathe scrap reinforced concrete", Int. J. Struct. Civil Eng. Res., 1(1), 1-6.
  65. Yildizel, S.A., Ozkilic, Y.O., Bahrami, A., Aksoylu, C., Basaran, B., Hakamy, A. and Arslan, M.H. (2023), "Experimental investigation and analytical prediction of flexural behaviour of reinforced concrete beams with steel fibres extracted from waste tyres", Case Studies Construct. Mater., e02227.
  66. Yu, H., Zhang, J., Fang, M., Ma, T., Wang, B., Zhang, Z. and Yang, K. (2023), "Bio-inspired strip-shaped composite composed of glass fabric and waste selvedge from A. pernyi silk for lightweight and high-impact applications", Compos. Part A: Appl. Sci. Manufact., 174, 107715. https://doi.org/10.1016/j.compositesa.2023.107715.
  67. Zhou, P., Li, C., Bai, Y., Dong, S., Xian, G., Vedernikov, A., Akhatov, I., Safonov, A. and Yue, Q. (2022), "Durability study on the interlaminar shear behavior of glass-fibre reinforced polypropylene (GFRPP) bars for marine applications", Construct. Build. Mater., 349, 128694.
  68. Zhou, S., Lu, C., Zhu, X. and Li, F. (2021), "Preparation and characterization of high-strength geopolymer based on BH-1 lunar soil simulant with low alkali content", Engineering, 7(11), 1631-1645. https://doi.org/10.1016/j.eng.2020.10.016.
  69. Zhou, F., Jiang, H., Huang, L., Hu, Y., Xie, Z., Zeng, Z. and Zhou, X. (2023), "Early shrinkage modeling of complex internally confined concrete based on capillary tension theory", Buildings, 13(9), 2201. https://doi.org/10.3390/buildings13092201.
  70. Zhou, F., Li, W., Hu, Y., Huang, L., Xie, Z., Yang, J. and Chen, Z. (2023), "Moisture diffusion coefficient of concrete under different conditions", Buildings, 13(10), 2421. https://doi.org/10.3390/buildings13102421.