DOI QR코드

DOI QR Code

Characteristics of Carbon Dioxide Separation for Solid Absorbents According to Amine Order

아민 차수에 따른 고체 흡수제의 이산화탄소 분리 특성

  • Hyun Tae Jang (Department of Chemical Engineering, Hanseo University)
  • 장현태 (한서대학교 화학공학과)
  • Received : 2023.07.21
  • Accepted : 2023.10.11
  • Published : 2023.11.01

Abstract

Primary and secondary amine-based sorbents were synthesized to investigate the operation capacity for the carbon dioxide separation TSA process. (3-Aminopropyl) triethoxysilane was used as a primary amine precursor as a crosslinking agent to synthesize a secondary amine precursor in which amine groups were crosslinked with a crosslinking agent. Carbon dioxide absorbed by primary amines is completely separated above 170 ℃. The working capacity of the primary amine absorbent was less than 2% when regenerated at 130℃. The secondary amine absorbent has a higher carbon dioxide separation capacity at a lower regeneration temperature than the primary amine absorbent. The secondary amine absorbent could predict process operation performance of about 6.5% with 2% carbon dioxide absorption and 100% carbon dioxide regeneration conditions. Therefore, it was found that the working capacity of the secondary amine absorbent was higher than that of the primary amine.

건식 이산화탄소 분리공정에서 아민 구조체의 운전 특성을 규명하기 위하여 1차 아민과 2차 아민 구조체를 합성하였다. TSA 조건에서 1차 아민과 2차 아민 건식 포집 분리제의 분리 특성을 연구하였다. (3-Aminopropyl) triethoxysilane을 1차 아민 전구체로 가교제로 이용하여 가교 결합된 2차 아민 전구체를 합성하였다. 합성된 2차 아민 전구체를 Tetraethyl orthosilicate를 구조배양제로 사용하여 2차 아민 고체상 이산화탄소 분리제를 합성하였다. 1차 및 2차 아민 구조체의 TSA 공정조건에서 이산화탄소 분리 특성을 비교하였다. 1차 아민에 흡수된 이산화탄소 분리는 170 ℃ 이상에서 완전히 이루어지나 이산화탄소에 의하여 아민이 우레아로 전환되며, 아민기 손실이 발생되었다. 아민 손실이 낮은 130 ℃ 재생시 1차 아민 분리제의 공정 운전성능(working capacity)은 본 구조체의 경우 2% 이하로 나타났다. 2차 아민이 낮은 재생온도에서 높은 이산화탄소 분리능을 나타내었다. 이산화탄소 2% 흡수 분위기와 100% 재생분위기에서 약 6.5%의 공정 운전 성능을 예측할 수 있었다.

Keywords

Acknowledgement

이 논문은 2023년도 한서대학교 교내 연구지원사업에 의하여 연구되었음.

References

  1. Korea 2050 Carbon Neutral Strategy (2020) https://www.2050cnc.go.kr/base/main/view.
  2. Lee, S. H., Lee, M. G., Jeon, W., Son, M. S. and Jung, S. P., "Current Status and Perspectives of Carbon Capture and Storage," J. Korean Soc. Environ. Eng., 44(12), 652-664(2022). https://doi.org/10.4491/KSEE.2022.44.12.652
  3. Kim, H. M. and Nah, I. W., "Brief Review on Carbon Dioxide Capture and Utilization Technology," Korean Chem. Eng. Res., 57(5), 589-595(2019).
  4. Dubey, A. and Akhilesh, A., "Advancements in Carbon Capture Technologies: A Review," Journal of Cleaner Production, 373(1), 133932(2022).
  5. Khosroabadi, F., Aslani, A., Bekhrad, K. and Zolfaghari, Z., "Analysis of Carbon Dioxide Capturing Technologies and their technology developments," Cleaner Engineering and Technology, 5, 100279(2021).
  6. Heo, Y. J., Lee, J. H., Lee, J. W. and Park, S. J., "Recent Research and Developments of Solid Adsorbents for CO2 Capture in Post-combustion," KIC News, 21(4), 13-23(2018).
  7. Choi, Y. J., Youn, M. H., Park, K. T., Kim, I. H. and Jeong, S. K., "Enhancement of Carbon Dioxide Absorption Rate with Metal Nano Particles," J. of the Korea Aca.-Ind. Coop. Soc., 16(10), 6439-6444(2015). https://doi.org/10.5762/KAIS.2015.16.10.6439
  8. Baek, G. H., You, S. H. and Cha, W. S., "Carbon Dioxide Absorption Property of Physical Sorbent in the Pre-Combustion Condition," J. of the Korea Aca.-Ind. Coop. Soc., 11(11), 4643-4648(2010). https://doi.org/10.5762/KAIS.2010.11.11.4643
  9. Quang, D. V., Dindi, A., Rayer, A. V., Hadri, N. E., Abdulkadir, A. and Abu-Zahra, M. R. M., "Impregnation of Amines Onto Porous Precipitated Silica for CO2 Capture," Energy Procedia, 63, 2122-2128(2014). https://doi.org/10.1016/j.egypro.2014.11.229
  10. Yamada, H., Dao, D. S., Chowdhury, F. A., Fujiki, J., Goto, K. and Yogo, K., "Development of Amine-impregnated Solid Sorbents for CO2 Capture," Energy Procedia, 63, 2346-2350(2014). https://doi.org/10.1016/j.egypro.2014.11.255
  11. Jang, H. T. and Cha, W. S., "Development of Porous Heterocyclic Polymer Solid Sorbent for Carbon Dioxide Separation," Ministry of Future Creation and Science, Korea (2014).
  12. Sumer, Z. and Keskin, S., "Ranking of MOF Adsorbents for CO2 Separations: A Molecular Simulation Study," Ind. Eng. Chem. Res. 55, 10404-10419(2016). https://doi.org/10.1021/acs.iecr.6b02585
  13. Erucar, I. and Keskin, S., "High-Throughput Molecular Simulations of MOFs for CO2 Separation : Opportunities and Challenges," Front. Mater., 5, 1-6(2018). https://doi.org/10.3389/fmats.2018.00001
  14. Qiao, Z., Zhang, K. and Jiang, J., "In Silico Screening of 4764 Computation-Ready, Experimental Metal-Organic Frameworks for CO2 Separation," J. Mater. Chem. A, 4, 2105-2114(2016). https://doi.org/10.1039/C5TA08984K
  15. Wu, D., Yang, Q. Y., Zhong, C. L., Liu, D. H., Huang, H. L., Zhang, W. J. and Maurin, G., "Revealing the Structure-Property Relationships of Metal-Organic Frameworks for CO2 Capture from Flue Gas," Langmuir, 28, 12094-12099(2012). https://doi.org/10.1021/la302223m
  16. Altintas, C., Avci G., Daglar, H., Azar, A. N. V. Velioglu, S., Erucar, I. and Keskin, S., "Database for CO2 Separation Performances of MOFs Based on Computational Materials Screening," Appl. Mater. Interfaces, 10, 17257-17268(2018). https://doi.org/10.1021/acsami.8b04600
  17. Vinodh, R., Babu, C. M., Abidov A., Palanichamy, M. and Jang, H. T., "Facile Synthesis of Amine Modified Silica/reduced Graphene Oxide Composite Sorbent for CO2 Adsorption," Materials Letters, 247(15), 44-47(2019). https://doi.org/10.1016/j.matlet.2019.03.082
  18. Vinodh, R., Abidov A., Palanichamy, M., Cha, W. S. and Jang, H. T., "Constrained Growth of Solid Amino Alkyl Siloxane (an organic-inorganic hybrid): The Ultimate Selective Sorbent for CO2", J. of Ind. Eng. Chem., 65(25) 156-166(2018). https://doi.org/10.1016/j.jiec.2018.04.024
  19. Gholidoust, A., Atkinson, J. D. and Hashisho, Z., "Enhancing CO2 Adsorption via Amine-Impregnated Activated Carbon from Oil Sands Coke," Energy Fuels, 31(2), 1756-1763(2017). https://doi.org/10.1021/acs.energyfuels.6b02800
  20. Das, D. and Meikap, B. C., "Role of Amine-impregnated Activated Carbon in Carbon Dioxide Capture," Indian Chemical Engineer, 63(4), 435-447(2021). https://doi.org/10.1080/00194506.2020.1760150
  21. Sanz-Perez, E. S., Arencibia, A., Sanz, R. and Calleja, G., "New Developments on Carbon Dioxide Capture Using Amine-impregnated Silicas," Adsorption, 22, 609-619(2016). https://doi.org/10.1007/s10450-015-9740-2
  22. Anyanwu, J. T., Wang, Y. and Yang, R. T., "Amine-Grafted Silica Gels for CO2 Capture Including Direct Air Capture," Ind. Eng. Chem. Res., 59(15), 7072-7079(2020). https://doi.org/10.1021/acs.iecr.9b05228
  23. Jang, D. I. and Park, S. J., "Influence of Amine Grafting on Carbon Dioxide Adsorption Behaviors of Activated Carbons," Bull. Korean Chem. Soc., 32(9), 3377-3381(2011). https://doi.org/10.5012/bkcs.2011.32.9.3377
  24. Cha, W. S., Lim, B. J., Kim, J. S., Lee, S. Y., Park, T. J. and Jang, H. T., "Characteristics of Carbon Dioxide Separation Using Amine Functionalized Carbon," J. of the Korea Aca.-Ind. Coop. Soc., 22(4), 17-24(2021).
  25. Min, K. M., Choi, W. S., Kim, C. H. and Choi, M. K., "Oxidation-stable Amine-containing Adsorbents for Carbon Dioxide Capture," Nature Communications, 9, 726(2018).
  26. Choi, W. S., Min, K. M., Kim, C. H., Ko, Y. S., Jeon, J. W., Seo, H. M., Park, Y. K. and Choi, M. K., "Epoxide-functionalization of Polyethyleneimine for Synthesis of Stable Carbon Dioxide Adsorbent in Temperature Swing Adsorption," Nature Communications, 7, 12640(2016).
  27. Choi, S. H., You, J. K., Park, K. T., Baek, I. H. and Park, S. J., "Carbon Dioxide Absorption Characteristics According to Amine Mixtures With Different Order," J. of the Korea Aca.-Ind. Coop. Soc., 14(9), 4635-4642(2013). https://doi.org/10.5762/KAIS.2013.14.9.4635
  28. Wu, H., Thibault, C. G., Wang, H., Cychosz, K. A., Thommes, M. and Li, J., "Effect of Temperature on Hydrogen and Carbon Dioxide Adsorption Hysteresis in An Ultramicroporous MOF," Microporous Mesoporous Mater., 219(1), 186-189(2016). https://doi.org/10.1016/j.micromeso.2015.08.005
  29. Mulfort, K. L., Farha, O. K., Malliakas, C. D., Kanatzidis, M. G. and Hupp, J. T., "An Interpenetrated Framework Material with Hysteretic CO2 Uptake," Chem. A Eur. J., 16, 276-281(2010). https://doi.org/10.1002/chem.200902104