DOI QR코드

DOI QR Code

First-Principles Analysis of Nitrogen Reduction Reactions on Ruthenium Catalyst Surfaces for Electrochemical Ammonia Synthesis

전기화학적 암모니아 합성을 위한 루테늄 촉매 표면에서의 질소 환원반응 메커니즘 해석의 위한 제1원리 모델링

  • Mihyeon Cho (Department of Chemical Engineering and Materials Science, Ewha Womans University) ;
  • Sangheon Lee (Department of Chemical Engineering and Materials Science, Ewha Womans University)
  • 조미현 (이화여자대학교 화공신소재공학과) ;
  • 이상헌 (이화여자대학교 화공신소재공학과)
  • Received : 2023.07.31
  • Accepted : 2023.09.10
  • Published : 2023.11.01

Abstract

Electrochemical ammonia production using catalysts offers a promising alternative to the conventional Haber-Bosch process, allowing for ambient temperature and pressure conditions, environmentally friendly operations, and high-purity ammonia production. In this study, we focus on the nitrogen reduction reactions occurring on the surfaces of ruthenium catalysts, employing first-principles calculations. By modeling reaction pathways for nitrogen reduction on the (0001) and (1000) surfaces of ruthenium, we optimized the reaction structures and predicted favorable pathways for each step. We found that the adsorption configuration of N2 on each surface significantly influenced subsequent reaction activities. On the (0001) surface of ruthenium, the end-on configuration, where nitrogen molecules adsorb perpendicularly to the surface, exhibited the most favorable N2 adsorption energy. Similarly, on the (1000) surface, the end-on configuration showed the most stable adsorption energy values. Subsequently, through optimized hydrogen adsorption in both distal and alternating configurations, we theoretically elucidated the complete reaction pathways required for the final desorption of NH3.

촉매를 사용한 전기화학적 암모니아 생산은 주변 온도 및 압력 조건, 환경 친화적인 작동 및 고순도 암모니아 생산을 가능하게 함으로써 전통적인 하버-보쉬 방법을 대체할 대안으로서 가능성이 있다. 본 연구에서는 제1원리 계산을 사용하여 루테늄 촉매의 표면에서 발생하는 질소 환원 반응에 초점을 맞춘다. 루테늄의 (0001) 및 (1000) 표면에서 질소 환원에 대한 반응 경로를 모델링하여 반응 구조를 최적화하고 각 단계에 대한 유리한 경로를 예측했다. 각 표면에서의 N2의 흡착 구성은 후속 반응 활동에 상당한 영향을 미쳤으며, 깁스자유에너지 분석은 가장 유리한 질소 환원 구성을 도출하였다. 루테늄의 (0001) 표면에서는 질소 분자가 표면에 수직으로 흡착하는 end-on 형태가 가장 유리한 N2 흡착에너지가 나타났으며 유사하게, (1000) 표면에서도 end-on 형태가 안정적인 흡착 에너지 값을 보였다. 이어서, distal 및 alternating 구성 모두에서 최적화된 수소 흡착을 통해 NH3의 최종 탈착까지 이론적으로 완전한 반응 경로를 설명했다.

Keywords

Acknowledgement

본 연구는 한국연구재단 동북아-지역 연계 초미세먼지 대응 기술개발 사업(과제번호: 2020M3G1A1114617)의 재정 지원으로 수행되었다.

References

  1. Seh, Z. W., et al., "Combining Theory and Experiment in Electrocatalysis: Insights Into Materials Design," Science 355, 6321 (2017).
  2. Fu, C., et al., "DFT Calculations: A Powerful Tool for Better Understanding of Electrocatalytic Oxygen Reduction Reactions on Pt-based Metallic Catalysts," Computational Materials Science 170, 109202(2019).
  3. Chiwata, M., et al., "Oxygen Reduction Reaction Activity of Carbon-supported Pt-Fe, Pt-Co, and Pt-Ni Alloys with Stabilized Ptskin Layers," Electrochemistry 84(3), 133-137(2016). https://doi.org/10.5796/electrochemistry.84.133
  4. Skulason, E., et al., "A Theoretical Evaluation of Possible Transition Metal Electro-catalysts for N2 Reduction," Physical Chemistry Chemical Physics 14(3), 1235-1245(2012). https://doi.org/10.1039/C1CP22271F
  5. Schlogl, R., "Catalytic Synthesis of Ammonia-a "never-ending story," ? Angew Chem. Int. Ed. Engl., 42(18), 2004-2008(2003). https://doi.org/10.1002/anie.200301553
  6. Qin, C., et al., "Proton Exchange Membrane Fuel Cell Reversal: A Review," Catalysts 6(12), 197(2016).
  7. Chen, S., et al., "Size-controlled Synthesis of Platinum-copper Hierarchical Trigonal Bipyramid Nanoframes," Angewandte Chemie 127(1), 110-115(2015). https://doi.org/10.1002/ange.201408399
  8. Yao, Y., et al., "Electrochemical Nitrogen Reduction Reaction on Ruthenium," ACS Energy Letters 4(6), 1336-1341(2019). https://doi.org/10.1021/acsenergylett.9b00699
  9. Lankiang, S. D., Baranton, S. and Coutanceau, C., "Electrocatalytic Behaviour Towards Oxygen Reduction Reaction of Carbon-supported PtxMyAuz (M=Ni, Cu, Co) Binary and Ternary Catalysts," Electrochimica Acta 242, 287-299(2017). https://doi.org/10.1016/j.electacta.2017.05.036
  10. Kim, S.-H., et al., "Impact of the Dopant-induced Ensemble Structure of Hetero-double Atom Catalysts in Electrochemical NH3 Production," Journal of Materials Chemistry A 10(11), 6216-6230(2022). https://doi.org/10.1039/D1TA08358A
  11. Kresse, G. and Furthmuller, J., "Efficient Iterative Schemes Forab Initiototal-energy Calculations Using a Plane-wave Basis Set," Phy. Rev. B, 54, 11169-11186(1996). https://doi.org/10.1103/PhysRevB.54.11169
  12. Perdew, J. P., Burke, K. and Ernzerhof, M., "Generalized Gradient Approximation Made Simple," Physical Review Letters 77(18), 3865(1996).
  13. Monkhorst, H. J. and Pack, J. D., "Special Points for Brillouin-zone Integrations," Physical Review B 13(12), 5188(1976).
  14. Peterson, A. A., et al., "How Copper Catalyzes the Electroreduction of Carbon Dioxide Into Hydrocarbon Fuels," Energy & Environmental Science 3(9), 1311-1315(2010). https://doi.org/10.1039/c0ee00071j
  15. Skulason, E., et al., "Modeling the Electrochemical Hydrogen Oxidation and Evolution Reactions on the Basis of Density Functional Theory Calculations," Journal of Physical Chemistry C 114(42), 18182-18197(2010). https://doi.org/10.1021/jp1048887
  16. Stroppa, A. and Kresse, G., "The Shortcomings of Semi-local and Hybrid Functionals: What We Can Learn From Surface Science Studies," New Journal of Physics 10(6), 063020(2008).
  17. Zhao, J. and Chen, Z., "Single Mo Atom Supported on Defective Boron Nitride Monolayer as an Efficient Electrocatalyst for Nitrogen Fixation: a Computational Study," Journal of the American Chemical Society 139(36), 12480-12487(2017). https://doi.org/10.1021/jacs.7b05213
  18. Chen, Z., et al., "Computational Screening of Efficient Single-atom Catalysts Based on Graphitic Carbon Nitride (g-C3N4) for Nitrogen Electroreduction," Small Methods 3(6), 1800368(2019).
  19. Ling, C., et al., "A General Two-step Strategy-based High-throughput Screening of Single Atom Catalysts for Nitrogen Fixation," Small Methods 3(9), 1800376(2019).