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Abstract 

 
As an important research direction of the application of computer science in the medical field, 
the automatic generation technology of radiology report has attracted wide attention in the 
academic community. Because the proportion of normal regions in radiology images is much 
larger than that of abnormal regions, words describing diseases are often masked by other 
words, resulting in significant feature loss during the calculation process, which affects the 
quality of generated reports. In addition, the huge difference between visual features and 
semantic features causes traditional multi-modal fusion method to fail to generate long 
narrative structures consisting of multiple sentences, which are required for medical reports. 
To address these challenges, we propose a multi-feature optimization Transformer (MFOT) 
for generating radiology reports. In detail, a multi-dimensional mapping attention (MDMA) 
module is designed to encode the visual grid features from different dimensions to reduce the 
loss of primary features in the encoding process; a feature pre-fusion (FP) module is 
constructed to enhance the interaction ability between multi-modal features, so as to generate 
a reasonably structured radiology report; a detail enhanced attention (DEA) module is 
proposed to enhance the extraction and utilization of key features and reduce the loss of key 
features. In conclusion, we evaluate the performance of our proposed model against prevailing 
mainstream models by utilizing widely-recognized radiology report datasets, namely IU X-
Ray and MIMIC-CXR. The experimental outcomes demonstrate that our model achieves 
SOTA performance on both datasets, compared with the base model, the average improvement 
of six key indicators is 19.9% and 18.0% respectively. These findings substantiate the efficacy 
of our model in the domain of automated radiology report generation. 
 
 
Keywords: Attention mechanism; Feature fusion; Radiology report; Transformer; Image-
text generation 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 17, NO. 10, October 2023                            2769 

1. Introduction 

Radiology examination is a crucial component of clinical diagnosis that helps doctors assess 
the physical condition of patients. The result of a radiology examination consists of a set of 
radiology images and a corresponding report, where the report is the initial diagnosis made by 
the radiologist for the patient based on the radiology images. In clinical work, the attending 
physician makes the final diagnosis based on the results of the radiology examination, 
combined with clinical symptoms and other examination results. With the growing population, 
doctors are exhausted by the increasing task of writing radiology reports. In order to alleviate 
the clinical workload on doctors, automatic generation of radiology reports using deep learning 
models have attracted the attention of academia and industry. 

Most of the automatic generation models of radiology reports are derived from the image 
captioning [1], both involve the process of converting visual information into natural language. 
Therefore, these two tasks share many similarities in implementation process and technology. 
The image captioning task requires the computer to understand the content of the image and 
automatically generate the corresponding description. In recent years, with the widespread 
application of mass storage devices, the amount of information has increased exponentially, 
data-driven artificial intelligence technology has become increasingly mature, and the research 
on image captioning has also achieved some good results [2-4]. Compared with the multi-
angle and multi-scene images used in image captioning, radiology images usually come from 
the human body structure with fixed scenes and fixed angles, and the similarity between 
images is high. The normal region in the image occupies the main part, and the characteristics 
of abnormal regions and normal regions of the image are extremely unbalanced, the abnormal 
region features learned by the model during the training process are easy to be masked by the 
normal region features, resulting in the loss of key and primary features in the model operation 
process, which affects the model's prediction ability for key words and primary words. 
Therefore, it is necessary to design additional modules for the model to carry out 
corresponding feature enhancement and alleviate the negative impact caused by data 
imbalance. As shown in Fig. 1, a standard radiology report contains two parts: report and tags. 
The words in the report part can be divided into key words, primary words, and common 
abstract words that do not belong to the two parts. Among them, the key words are mainly 
composed of medical professional words with summative characteristics, and the primary 
words are mainly composed of adjectives describing medical words. In addition, the labels 
extracted from the report cannot summarize the medical words of the entire report, so there 
are certain limitations in the application of label features in model optimization. In addition, 
the task of automatic radiology report generation requires the model to have the ability to 
generate long narratives composed of multiple sentences to describe the comprehensive 
condition of the patient. This requires the model to be able to accurately establish the mapping 
relationship between visual features and semantic features, reduce the negative impact caused 
by feature differences, and generate text that meets the structural requirements of radiology 
reports. 
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Ground-truth Report
Report: The heart is normal size. The mediastinum is unremarkable. 
There is no pleural effusion, pneumothorax, or focal airspace disease. 
There is a stable calcified granuloma within the left lower lobe. There 
are stable chronic degenerative changes of the thoracic spine.

Tags: calcified granuloma, granuloma

 
Fig. 1. A standard lung radiology medical report from the IU X-Ray dataset, where yellow labeled 

words indicate key words, green labeled words indicate key words, and Tags represent the 
corresponding tag words. 

 
In order to alleviate the loss of key and primary features and strengthen the model's ability 

to understand the relationship between semantic and visual features, we propose to use the 
MFOT to generate radiology reports. Specifically, the contributions of this paper can be 
summarized in the following three aspects: 

Firstly, we design an MDMA module to perform more comprehensive coding calculation 
based on the internal structure of visual grid features to reduce the loss of primary features in 
the encoding process. Secondly, we propose an FP module to fuse semantic features and visual 
features, improve the model's ability to learn the mapping relationship between different 
features, reduce the disturbance caused by feature differences, and generate radiology reports 
with good image alignment. Finally, we propose a DEA module to extract the fine-grained key 
features, and calculate the detail-enhanced attention according to the extracted key features to 
reduce the loss of key features, improve the prediction ability of key words, and generate more 
accurate radiology reports. 

2. Related Work 

2.1 Machine Learning in Radiology 
Machine learning is the core research direction in the computer field [5], and its good 
universality directly promotes the cross-research between computer science and other 
disciplines, and has a wide range of application prospects [6-7]. Radiology is an important 
subject in the field of medicine. In clinical application, radiology is used to perform radiology 
diagnosis and radiotherapy. Among them, radiology diagnosis and computer model training 
can use pictures as data-driven, so there is a natural advantage in the intersection of radiology 
and computer science. At present, remarkable achievements have been made in the fields of 
automatic generation of radiology reports [8-17], prediction of relative regional air volume 
changes in the lungs [18-19], automatic detection of pulmonary nodules [20-21], and radiology 
image segmentation [22-24]. Among them, the automatic generation model of radiology 
reports has a particularly significant practical value in clinical applications, which not only 
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reduces the work pressure of radiologists, but also improves the medical level in developing 
countries and remote areas, and alleviates the imbalance of global medical resources. 

2.2 Image Captioning 
The automatic generation task of radiology report is derived from the image captioning, which 
is one of the most active research directions in the field of artificial intelligence. Its purpose is 
to enable the computer to automatically generate a natural language description sentence 
according to the given image. Current research has achieved good results [2-4, 25-30]. Among 
them, Liu et al. [26] designed an attention mechanism for the semantics of coherence attributes 
and related image regions to deepen the model's understanding of depth image features. Pan 
et al. [30] designed an attention module that explored the interaction of features within and 
between modalities, so as to enhance the ability of the model to utilize multi-modal features. 
Anderson et al. [2] proposed an attention mechanism that coordinates the internal work of the 
model, so that the model accurately judged the areas that need to be paid attention to and 
automatically selected the corresponding tensor space when generating different words. 
However, it neglected the feature differences between different features and did not effectively 
align the visual images and the abstract words. Huang et al. [28] extended the conventional 
attention mechanism and built a mapping matrix for the correlation vector and the given 
attention query vector to strengthen the reasoning ability of the model, thereby reducing the 
loss of primary features. However, its use of the query vector was too direct, resulting in too 
many disturbance factors mixed into the attention results. Wang et al. [29] used the method of 
multi-feature pre-fusion to optimize multi-modal features, but it did not carry out additional 
fusion measures for the initial semantic features. The model did not adjust the overall structure 
of the two features, resulting in insufficient interaction between the front and back of the model, 
and eventually produced feature deviation. 

2.3 Automatic Radiology Report Generation 
Radiology reports include specialized descriptions of multiple areas of the image, which 
require detailed and accurate wording, and the current models used for image description tasks 
are not well adapted to this task. In order to generate radiology reports that meet the 
requirements of clinical application, researchers conducted a series of experiments based on 
the characteristics of radiology reports and obtained good results [8-17, 31-33]. Most of the 
initial studies used Recurrent Neural Network (RNN) as decoder to generate reports. Liu et al. 
[8] first predicted the topics of the report, and then generated corresponding sentences 
according to these topics to meet the structural requirements of radiology reports. Jing et al. 
[9] designed a multi-task learning framework that allows models to be trained using label 
information to improve the quality of generated reports. Zhang et al. [10] built a disease 
relationship mapping matrix based on medical expertise to reduce misdiagnosis and missed 
diagnosis of diseases by improving the ability to predict labels. Wang et al. [31] designed a 
graph convolutional network (GCN) to encode prior medical knowledge and semantic features 
to optimize the underlying logic of the model. Liu et al. [15] optimized the training data 
according to the training difficulty, thereby alleviating the problem of data imbalance.   

Recently, as Transformers have made significant breakthroughs in many fields, 
researchers have begun to use transformers to build encoder-decoder frameworks to improve 
the model's ability to learn long sequences of task dependencies. Among them, Song et al. [11] 
designed a contrastive learning module to compare abnormal pictures with normal ones, so as 
to identify abnormal areas. Chen et al. [12] designed a cross-modal cache network to establish 
the mapping relationship between different features and alleviate the negative impact caused 
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by feature differences. Chen et al. [13] designed a memory matrix and integrated it into the 
Transformer model to help the model understand the dependency between texts. You et al. [14] 
proposed an attention module with hierarchical alignment function to encode multi-modal 
features, and used multi-granularity features to learn the mapping relationship between visual 
features and label features to generate radiology reports. However, this method is not 
optimized for the differences between semantic and visual features, and the generated report 
content is not comprehensive enough. Wang et al. [32] used the Transformer architecture for 
both encoding and decoding calculations, allowing the model to establish long dependencies 
on both image and semantic features. Liu et al. [16] used the anomalous visual features 
provided by posterior knowledge and the knowledge graph provided by prior knowledge to 
generate reports to mitigate the negative effects of data bias.  

Compared with these studies, our model can both reduce misdiagnosis and misdiagnosis 
of disease, generate text that conforms to the radiology reporting structure, and reduce the loss 
of key features without the use of label information to avoid new error perturbations. In 
addition, according to the composition structure of grid features, we encode them with multi-
dimensional mapping attention, which alleviates the loss of primary features. Finally, 
additional feature fusion is applied to the initial semantic features, which alleviates the 
confusion of query vector structure caused by feature fusion, promotes the interaction between 
the two features, and achieves fine-grained feature alignment. 

3. Method 
The essence of automatic generation of radiology reports is the task of generating images from 
texts. We use the same method as Chen et al. [13] to formalize images and texts into two 
sequences, which are denoted by X and Y  respectively. X and Y can be expressed as follows: 
 

 { } d,= ∈R1 2 A aX x , x , ..., x x
 

(1) 

 { } ,= ∈1 2 B bY y , y , ..., y y S    (2) 

where ax  is the a th grid feature extracted from the visual extractor, d  is the size of the 
mapped feature vector, by  represents the vector space corresponding to the b th word in the 
generated sequence, and S   represents the set of all words in the generated report. Fig. 2 
represents the overall structure of the model proposed in this study, and the details are given 
in Subsection 3.1. 

3.1 Overview 
As shown in Fig. 2, our model consists of three parts: visual extractor, encoder, and decoder, 
where MDMA module exists in the encoder part, DEA module and FP module exist in the 
decoder part. 
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Fig. 2. Overall structure of the model 

 
 

Visual Extractor: We use the pre-trained ResNet-101 [34] model to extract visual 
features. It can extract serialized visual features from radiology images, and the process can 
be expressed as: 

 veF ( ) =I X
 

(3) 
where veF  represents the extraction operation of the visual extractor, and I  represents 

the input radiology images. 
Encoder: The encoder in this study differs from the vanilla Transformer encoder in that 

we use the MDMA module to replace the multi-head attention. The encoder module can be 
mathematically expressed as follows: 

 
eF (MDMA( ))=Z X  (4) 

where eF  represents the encoder, Z  represents the final output of the encoder, and 
MDMA  represents the operation of the MDMA module. Details about the MDMA module 
are described in Section 3.2. 

Decoder: In the design of the decoder, we add the DEA module and FP module to the 
decoder of the vanilla Transformer. The decoder generates the next word according to the 
output Z  of the encoder and the sequence of words that have been predicted. The specific 
calculation process can be expressed as: 

 dF (DEA(CA( ,FP( , ( , ,..., )))))=t 1 2 t -1y Z Z y y y
 

(5) 

where ty  represents the sequence of words predicted in the time step t , dF  represents 
the decoder, and CA  represents the operation of the cross-attention module. Details about the 
FP module and DEA module are described in Sections 3.3 and 3.4. 
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Loss function: We use the same method as Chen et al. [13] to train our model, using 
cross-entropy loss function, which is specifically expressed as: 

 
T

t=1
log(p( | , , , , , ))= −∑ t 1 2 t -1L y y y y I θ  (6) 

where, θ  denotes the parameters of the model. 

3.2 Multi-dimensional Mapping Attention Module 
We use the MDMA module to reduce the loss of primary features during training. The module 
uses a double-branch structure to encode visual features in two dimensions, so that the model 
can focus on the primary features within and between grids at the same time, thereby reducing 
the loss of primary features. In the first branch, MDMA performs multi-head attention 
calculations directly on input visual features to achieve focus on primary features within the 
grid, which is expressed as follows: 

 ( )TT T T
1 2 k 3Softmax( / d )=M' W X W X W X

 
(7) 

where T
1W  , T

2W  and T
3W  are trainable projection matrices, Softmax   represents the 

Softmax activation function, kd  represnts the scaling factor. M'  is the output of the first 
branch. In the second branch, MDMA first makes tensor dimension adjustment on the input 
visual features, so that the operation of dividing multiple heads directly acts on different grid 
features, thus realizing multi-head attention calculation between grids. Finally, the result is 
adjusted again for tensor dimension, and the result is taken as the output of the second branch. 
The specific calculation can be expressed as follows: 
 Trans( )=X' X  (8) 

 ( )TT T T
4 5 k 6Softmax( / d )=M'' W X' W X' W X'  (9) 

 Trans( )=M''' M''  (10) 

where T
4W  , T

5W  and T
6W  are trainable projection matrices, X'  represents the visual 

feature after adjusting the tensor dimension, Trans  represents the tensor dimension 
adjustment operation, M''  is the hidden state during the computation of the second branch, 
M'''  is the output of the second branch. Finally, the output of the two branches is combined 
using the full connection layer, and the result is taken as the output of the MDMA module. 
The specific calculation process can be expressed by (11): 

 T
7 (concat( , ))=M W M' M'''    (11) 

where T
7W  is trainable projection matrices, concat  represents the concatenation 

operation, M  is the output of the MDMA module. 

3.3 Feature Pre-fusion Module 
Due to the different data types represented by visual features and semantic features, there are 
inevitably some feature differences between them. As shown in the left picture of Fig. 3, 
traditional feature fusion methods directly use the cross-attention module to force alignment 
between visual features and semantic features, without considering the impact caused by 
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feature differences. This makes it difficult for the model to learn enough information to 
generate the long narrative structure consisting of multiple sentences required for radiology 
reports. 

Feature Pre-fusion 

Cross- Attention

Semantic 
Feature

Visual 
Feature

Cross- Attention

Semantic 
Feature

Visual 
Feature

 
Fig. 3. Comparison between the traditional multi-modal fusion method (left) and our proposed  

multi-modal fusion method (right). 
 

To this end, as shown in the right figure of Fig. 3, we design an FP module that can adjust 
the overall structure of multi-modal features and add it before the cross-attention calculation, 
thereby creating a buffer space for multi-modal feature fusion, helping the model understand 
the mapping relationship between visual features and semantic features, and generating a 
radiology report with appropriate structure. Specifically, the FP module firstly extracts the 
global features from the visual features, and uses a multilayer perceptron (MLP) to integrate 
them into the semantic features to obtain the primary multi-modal features. Then, the 
adjustable addition module is used to integrate the original semantic features into the primary 
multi-modal features in proportion. Finally, two activation functions, Sigmoid and Softmax, 
are used for attention calculation at the same time, and the results are output after a fully 
connected layer reshapes the dimension. The specific calculation formula of the FP module 
can be expressed as follows: 

 T
8 ( , , , )= 1 2 t -1SS W y y y    (12) 

 Add( , ) ,0 1= + < <j k j μk μ  (13) 

  T T
9 10Add( concat( ,Mean( )) , )=1H W SS Z W SS  (14) 

 T T
11 11( )σ= 2 1 1H W H W H

 
(15) 

 
T T

11 11Softmax( )= 3 1 1H W H W H
 

(16) 
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T

12 (concat( , ))=4 2 3H W H H
 

(17) 

where SS  represents the semantic feature, Add  represents the adjustable add operation, 
μ  represents an adjustable weighting factor, j  and k  represent the parameters for which the 

Add operation is required, Mean   represents the averaging operation, 1H  , 2H  , 3H  

represent the hidden state during the execution of the FP module, T
8W , T

9W , T
10W , T

11W  and 
T

12W   are trainable projection matrices, σ   represents the Sigmoid activation function,   
represents the Hadamard product, 4H  represents the output of the FP module. Thereafter, 

4H  is fed to the cross-attention module to generate the current hidden state H. 

3.4 Detail-Enhanced Attention Module 
Most of the past studies use the computational results of the cross-attention module to directly 
predict radiology reports, but it has certain limitations in the radiology report generation task 
with extremely imbalanced data, and the visual features are difficult to meet the query 
requirements of key features. To this end, we propose to use the DEA module to strengthen 
the extracted key features and improve the feature utilization ability of the model. The specific  
operation process of the DEA module can be expressed by the formula as follows: 

 Mean( )=H' H    (18) 

 Max( )=H'' H    (19) 

  T
13Conv(ReLU(Conv( )))=1C W H'  (20) 

 14Conv(ReLU(Conv( )))T=2C W H''
 

(21) 

 tanh(( ) ( ))σ+ += + 1 2 1 2C H C C C C H
 

(22) 

where H'  and H''  represent the extracted key features, Max  represents the maximum 
calculation operation, 1C  and 2C  represent the context features in the operation process, T

13W  

and 14
TW  represent the trainable projection matrix, Conv  represents the convolution 

operation, and C represents the final output context features. 

4. Experimental Setup and Result Analysis 

4.1 Dataset and Evaluation Metrics 
We adopt the public datasets IU X-Ray [35] and MIMIC-CXR [36], which are widely used in 
current studies. The IU X-Ray dataset is released by Indiana University in 2015 and includes 
7.470 images and 3,995 reports. We use the same data partition as Chen et al. [13] to divide 
the training, validation, and test sets by the ratio of 7:1:2. The MIMIC-CXR dataset is released 
by the Beth Israel Deaconess Medical Center, is the largest of its kind, with 473,057 images 
and 236,563 reports from 63,478 patients. We use the officially provided data partition to 
increase the credibility of the experiment. In addition, we adopt the same preprocessing to the 
reports as Chen et al. [13],  removing unreported images and converting all letters to lowercase. 
The top five frequently occurring words in the reports of the two datasets are shown in Fig. 4, 
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and the analysis shows that the abstract words corresponding to no image region have a high 
frequency. 

 

 

 
Fig. 4. The above figure shows the top five words in the IU X-Ray dataset, and the below figure shows the 

top five words in the MIMIC-CXR dataset 

 
We evaluate our model using natural language processing (NLP) evaluation metrics 

BLEU [37], METEOR [38], and ROUGE-L [39]. B1, B2, B3 and B4 are BLEU metrics when 
N-grams are 1, 2, 3, and 4, respectively, and ROUGE stands for ROUGE-L metric. 
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4.2 Implementation Details  
We use a ResNet-101 model that has been pre-trained on ImageNet 1K1 to extract grid features 
from images with the dimension of each feature set to 2,048. The number of heads for multi-
head attention is set to 8. It should be noted that the IU X-Ray dataset contains frontal and 
lateral images of one patient, which we combined as input to the visual extractor. In addition, 
we set the rate decay of each epoch to 0.8, the beam size to 3, the learning rates of the visual 
extractor and other parameters to 1e-4, 5e-5, and the batch size to 32. 

4.3 Comparative experiment 
As shown in Table 1, we used six NLP evaluation indicators to compare the model proposed 
in this study with the current mainstream models [11-13, 15-19, 40-41]. Among them, AdaAtt 
[40] could automatically select the features that need to be relied on, M2Transformer [41] used 
a new connection method to connect the decoder and the encoder, CMCL [15] established a 
data alignment mechanism based on long short term memory (LSTM), R2Gen [13] designed 
a memory module to store contextual information and establish a contextual dependency 
relationship, PPKED [16] detected and assigned disease labels according to the doctor's 
working style, CA [11] could learn the difference between normal and abnormal samples, 
GSKET [17] could learn both general and special medical knowledge. 
 

Table 1. Comparison of NLG index effect between the proposed model and the existing models 
Dataset Model B1 B2 B3 B4 METEOR ROUGE 

IU X-Ray 

AdaAtt 43.6 28.8 20.3 15.0 - 35.4 

M2Transformer 46.3 31.8 21.4 15.5 - 33.5 

CMCL 47.3 30.5 21.7 16.2 18.6 37.8 

R2Gen 47.0 30.4 21.9 16.5 18.7 37.1 

CMN 47.5 30.9 22.2 17.0 19.1 37.5 

PPKED 48.3 31.5 22.4 16.8 - 37.6 

CA 49.2 31.4 22.2 16.9 19.3 38.1 

GSKET 49.6 32.7 23.8 17.8 - 38.1 

Ours 51.7 35.6 25.9 19.1 21.4 39.0 

 
MIMIC-CXR 

 

AdaAtt 29.9 18.5 12.4 8.8 11.8 26.6 

M2Transformer 21.2 12.8 8.3 5.8 - 24.0 

CMCL 34.4 21.7 14.0 9.7 13.3 28.1 

R2Gen 35.3 21.8 14.5 10.3 14.2 27.7 

CMN 35.3 21.8 14.8 10.6 14.2 27.8 

PPKED 36.0 22.4 14.9 10.6 14.9 28.4 

CA 35.0 21.9 15.2 10.9 15.1 28.7 

GSKET 36.3 22.8 15.6 11.5 - 28.4 

Ours 38.5 23.7 16.5 12.1 15.6 28.6 

 
1 https://www.imagenet.org/challenges/LSVRC/index.php 
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Further analysis shows that our model has a significant performance improvement 

compared with the image captioning models AdaAtt [40] and M2Transformer [41], which 
indicates that the image captioning model cannot meet the needs of the radiology report 
generation task. In addition, by comparing with the specialized models for radiology reports 
[11-13, 15-17], the scores of our model on the two datasets are significantly better than those 
of the current state-of-the-art models. Specifically, BLEU-1 improves from 49.6 to 51.7 on IU 
X-Ray dataset and from 36.3 to 38.5 on MIMIC-CXR dataset. 

4.4 Ablation experiment 
As shown in Table 2, we conducted complete ablation experiments on two datasets for the 
three newly proposed modules in the model. Base represents the base model without adding 
our proposed module, MDMA, DEA, and FP represent the multi-dimensional mapping 
attention module, detail-enhanced attention module, and pre-fusion module respectively, 
Base+MDMA+DEA+FP represents the final model of this study. Compared to the base model, 
each module of our model improves. Among them, the MDMA module has an average 
increase of 4.1% compared with the base model in six evaluation indicators on the IU X-Ray 
dataset and 5.1% on the MIMIC-CXR dataset. The DEA module improves by 6.0% on IU X-
Ray dataset and 8.0% on MIMIC-CXR dataset. The FP module achieves 2.2% improvement 
on IU X-Ray dataset and 2.7% improvement on MIMIC-CXR dataset. The experimental 
results prove that the three modules we proposed have strong robustness and achieve good 
results without using label data. 

 
Table 2. Effect comparison between the basic model and the model in this study 

Dataset Model B1 B2 B3 B4 METEOR ROUGE 

IU X-Ray 

Base 44.3 28.4 20.6 15.9 18.0 34.7 
Base+MDMA 45.2 29.2 21.7 16.9 18.8 36.0 

Base+DEA 46.6 29.8 21.4 16.1 19.7 38.6 
Base+FP 44.6 28.8 21.0 16.2 18.5 36.3 

Base+MDMA+FP 45.5 29.9 22.3 17.6 19.0  37.2 
Base+MDMA+DEA 50.1 32.5 24.5 18.2 20.1 39.1 

Base+DEA+FP 49.3 32.0 23.2 17.6 20.4 38.8 
Base+MDMA+DEA+FP 51.7 35.6 25.9 19.1 21.4 39.0 

 
MIMIC-CXR 

 

Base 32.9 20.1 13.4 9.7 13.1 26.9 
Base+MDMA 34.6 20.9 14.2 10.6 13.6 27.5 

Base+DEA 35.6 21.6 14.9 10.7 14.3 27.3 
Base+FP 33.5 20.4 13.9 10.2 13.5 27.2 

Base+MDMA+FP 35.4 21.6 14.7 11.2 14.6 28.5 
Base+MDMA+DEA 37.5 23.0 15.5 11.4 14.9 27.6 

Base+DEA+FP 37.0 22.8 15.2 10.9 14.4 27.5 
Base+MDMA+DEA+FP 38.5 23.7 16.5 12.1 15.6 28.6 

 
We use the Beam Search algorithm to generate the final report. The number of words 

retained in each time step of the algorithm is denoted as the hyperparameter Beam, and the 
size of Beam will directly affect the final performance of the model. As shown in Table 3, 
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when Beam is set to 3, our model achieves the best performance in both datasets. In addition, 
in IU X-Ray dataset, when the Beam is 5, ROUGE-L index score is the highest. 

 
       Table 3. Hyperparameter ablation study based on IU X-Ray dataset and MIMIC-CXR dataset 

Dataset Beam B1 B2 B3 B4 METEOR ROUGE 

IU X-Ray 

1 46.8 30.4 21.1 15.6 19.8 37.2 
2 49.4 31.6 22.4 16.3 20.7 37.5 
3 51.7 35.6 25.9 19.1 21.4 39.0 
4 50.4 32.7 22.8 18.8 20.5 38.1 
5 51.3 34.3 25.3 19.0 20.2 39.3 

MIMIC-CXR 

1 34.2 20.8 12.5 9.5 12.5 24.6 

2 36.6 22.2 15.0 10.9 14.2 26.8 
3 38.5 23.7 16.5 12.1 15.6 28.6 

4 37.8 22.9 15.8 11.2 14.3 27.3 

5 37.2 22.4 15.6 10.8 14.0 27.0 

 
In the FP module, we introduce the adjustable addition module, which contains a 

manually adjusted weighting factor to adjust the proportion of introduced original semantic 
features. As shown in Table 4, we evaluated the performance of the model with different μ 
selected. When μ is 0.6, the comprehensive index achieves the best effect. 

 
 Table 4.   Ablation study of the weighting factor μ in the IU X-Ray dataset and MIMIC dataset 

Dataset μ B1 B2 B3 B4 METEOR ROUGE 

IU X-Ray 

0.0 47.3 31.0 21.9 16.3 20.1 37.3 
0.2 47.5 31.1 22.1 16.6 20.5 37.2 
0.4 49.2 33.6 23.6 18.7 20.8 38.2 
0.6 51.7 35.6 25.9 19.1 21.4 39.0 
0.8 50.5 34.2 25.0 18.2 21.1 38.3 

MIMIC-CXR 

0.0 36.3 22.9 14.7 10.9 14.0 26.6 

0.2 36.6 23.1 15.2 11.2 14.3 27.5 

0.4 37.5 23.0 15.7 11.6 14.8 27.9 

0.6 38.5 23.7 16.5 12.1 15.6 28.6 

0.8 38.0 23.4 15.9 11.8 15.2 28.2 

  

4.5 Complexity analysis 
As shown in Table 5, we conducted a complexity analysis of this model based on the IU X-
Ray dataset, and compared with the R2Gen [13] model, our model achieved better results 
while using fewer parameters. 
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              Table 5. The Results of Complexity Analysis 
Dataset Model Parameters B1 B2 B3 B4 METEOR ROUGE 

IU X-Ray 

Base 56.95M 44.3 28.4 20.6 15.9 18.0 34.7 

R2Gen 78.47M 47.0 30.4 21.9 16.5 18.7 37.1 

Ours 77.21M 51.7 35.6 25.9 19.1 21.4 39.0 

 

4.6 Generalization analysis 
We verify the generalization of the model with the help of the current SOAT model: S2-
Transformer [42]. We integrated the proposed three modules into the S2-Transformer model, 
trained using cross-entropy loss on two datasets, and the final results are shown in Table 6, 
Our model has a certain optimization effect on S2-Transformer, improving 8.2% and 10.1% 
on IU X-Ray dataset and MIMIC-CXR dataset, respectively, which shows that our model has 
good generalization. 
 

Table 6. The Results of Generalization Analysis 
Dataset Model B1 B2 B3 B4 METEOR ROUGE 

IU X-Ray 
S2-Transformer 43.5 28.0 20.7 15.8 17.7 35.6 

S2-Transformer+Ours 46.7 31.1 22.7 17.2 18.9 37.5 

MIMIC-CXR 
S2-Transformer 33.0 19.8 12.7 9.2 12.2 27.1 

S2-Transformer+Ours 35.2 21.9 14.5 10.4 13.7 28.2 

 

4.7 Analysis of results 
In order to more intuitively show the optimization effect of our proposed model and its three 
new modules, we used five models including base model to test and analyze a group of medical 
cases in IU X-Ray dataset containing images of front and side chest, and the results are shown 
in Fig. 5. Among them, Ground-truth is the report manually written by doctors, Base is the 
report generated by the base model, Base+MDMA is the report generated by adding the 
MDMA module to the base model, Base+FP is the report generated by adding the FP module 
to the base model, Base+DEA is the report generated by adding the DEA module to the base 
model, Ours is the report generated by the complete MFOT model, words marked in yellow 
are primary words and words marked in green are key words. 
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IU X-Ray

Heart size is within normal limits. 
Tortuous aorta. Clear lungs. No 
pneumothorax. No pleural effusion. 
Atherosclerotic calcification with-in 
the aorta. Right lower lung 
granuloma.

The heart and mediastinum are 
normal size and shape. The lungs are 
clear. The aorta is tortuous.

The lungs are clear. Heart size and 
mediastinum contour are normal.
The lungs and pleural spaces show 
no acute abnormality.  Bony 
structures are within normal limits.

The lungs are clear without focal 
area of consolidation. Pleural 
effusion or pneumothorax.

The lungs are clear. Atherosclerotic 
calcification with-in the aorta. Lung 
granuloma. No pleural effusion or 
pneumothorax.

The heart size and pulmonary 
vascularity appear within normal 
limits. The lungs are clear. No 
pleural effusion or visible 
pneumothorax. There is no acute 
bony abnormality. Atherosclerotic 
calcification with-in the aorta. There 
is a granuloma in the right lower 
lung.

Ground-truth Base Base+MMA

Base+FP Base+DEA Ours

 
Fig. 5. Comparison of reports generated from Ground-truth, Base, Base+MDMA, Base+FP, 

Base+DEA, and Base+MDMA+DEA+FP model. 
 

Further analysis reveals that the base model did not generate appropriate language 
structures, and the second sentence was completely contrary to the human-written report. The 
Base+MDMA model generated more primary words than the base model and successfully 
recognized the aortic morphology, which shows that the MDMA module has a good 
optimization effect on the primary features. The Base+FP model generated more long narrative 
sentences than the base model, which is more in line with the needs of radiology reports and 
alleviates the feature gap directly between multi-modal features. The Base+DEA model 
generated more key words than the base model, and the description of the normal area was 
basically consistent with the manual report, so as to successfully identify "lung granuloma", 
but the primary features were not strengthened, so the appropriate primary words were not 
generated. The MFOT model not only generated a report with appropriate structure, but also 
had the expected number of primary words and key words, and accurately identified the 
disease and the location of the disease. 

Image lungs heart left

Image lungs heart left 0.0

1.0

Ours

Base

Fig. 6. The visual image of the image text attention mapping generated by Base and Base+SA+DEA+FP  
model, with colors from blue to green representing weights from low to high. 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 17, NO. 10, October 2023                            2783 

 

As shown in Fig. 6, we performed visual operations on the cross-attention module in the 
base model and the multi-feature optimized Transformer based on the MIMIC-CXR dataset. 
Through the visualization of words such as "heart", it can be found that our model can more 
accurately establish the dependency relationship between the image and the generated word, 
and successfully accomplish the feature alignment task without relying on label features. 

IU X-Ray

Ground-truth Report
Frontal and lateral views of the chest with overlying external cardiac 
monitor leads show an unchanged cardiomediastinal silhouette. Cardiac 
silhouette at the upper limits of normal in size. Tortuous ectatic aorta. 
The aortic XXXX is near 5 cm in diameter. There is a retrocardiac left 
paraspinal bulge concerning for a descending thoracic aortic aneurysm. 
There is biapical scarring. No XXXX focal airspace consolidation or 
pleural effusion. XXXX spine spondylitic changes.

Generated Report
The lungs are clear.  There is a paraspinal bulge. The cardiomediastinal 
silhouette is normal in size and contour. No focal consolidation and 
pneumothorax. Negative for acute bone abnormality.

MIMIC-CXR

Ground-truth Report
Sternal wires, valve prosthesis, cardiac device, and mild cardiomegaly are unchanged.  There 
is new left lower lobe infiltrate and small left effusion.  There is also a small right effusion.

Generated Report
Clear lungs. No focal consolidation or pneumothorax. Small pleural effusions are present. 
Normal size of the cardiac silhouette.  

Fig. 7. Failure cases of MFOT model on IU X-Ray dataset and MIMIC-CXR dataset. Sentences marked in 
red indicate high-frequency sentences in radiology reports. 

 
As shown in Fig. 7, we present the failure cases generated by the MFOT model. Analysis 

shows that the MFOT model successfully generates some key words and primary words in 
both cases, such as "pleural effusion", "paraspinal bulge", etc., but there are still some key 
words and primary words missed. We believe that this is because multiple key words and 
primary words correspond to the same image region, and the ability of the proposed model to 
align multiple semantic information with the same image region cannot meet the actual clinical 
needs, resulting in the quality of generated reports. In addition, a variety of diseases have 
certain associations with each other, such as "paraspinal bulge" and "thoracic aortic aneurysm", 
and our model does not learn the relationship between diseases like clinical practice, resulting 
in insufficiently comprehensive reports generated. In summary, this task faces two problems. 
First, the model cannot generate appropriate reports when multiple diseases correspond to the 
same regional image, and second, the model also needs to learn the relationship between 
diseases, both of which are very valuable research directions. 
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5. Conclusion 
This paper proposes to use the MFOT to generate radiology reports, which is the first deep 
learning model that is specially optimized for the generation of medical professional words 
without using label data. Specifically, we propose three new modules: MDMA, DEA, and FP. 
Among them, the MDMA module and DEA module can respectively reduce the loss of 
primary features and key features in the process of model calculation, and the FP module can 
improve the interaction ability between multi-modal features. The three modules cooperate 
with each other, so that the problem of misreporting and underreporting of diseases can be 
preliminatively solved, and the report structure generated basically meets the requirement of 
long narrative composed of multiple sentences. However, the model proposed in this study 
still has some limitations. First of all, it is difficult for this model to cope with the special cases 
where multiple key words and primary words correspond to the same visual region. Therefore, 
a memory module will be designed for the model in the future to strengthen the model's 
understanding of the special region. Secondly, this model does not learn the relationship 
between diseases, which makes it difficult for the model to establish a logical relationship 
between diseases. In the future, we will try to establish a knowledge map of disease 
relationships for the model to strengthen the model's learning of basic medical knowledge. 
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