DOI QR코드

DOI QR Code

인이 도핑된 NiCo2O4 전극 제조 공정의 간소화를 통한 전극 특성의 변화

Variations in electrode characteristics through simplification of phosphorus-doped NiCo2O4 electrode manufacturing process

  • 이석희 (부산대학교 재료공학과) ;
  • 차현진 (부산대학교 재료공학과) ;
  • 박정환 (부산대학교 재료공학과) ;
  • 손영국 (부산대학교 재료공학과) ;
  • 황동현 (신라대학교 배터리학과)
  • Seokhee-Lee (School of Materials Science and Engineering, Pusan National University) ;
  • Hyunjin Cha (School of Materials Science and Engineering, Pusan National University) ;
  • Jeonghwan Park (School of Materials Science and Engineering, Pusan National University) ;
  • Young Guk Son (School of Materials Science and Engineering, Pusan National University) ;
  • Donghyun Hwang (Department of Batteries Science and Engineering, Silla University)
  • 투고 : 2023.08.17
  • 심사 : 2023.08.30
  • 발행 : 2023.10.31

초록

In this study, phosphorus (P)-doped nickel cobaltite (P-NiCo2O4) and nickel-cobalt layered double hydroxide (P-NiCo-LDH) were synthesized on nickel (Ni) foam as a conductive support using hydrothermal synthesis. The thermal properties, crystal structure, microscopic surface morphology, chemical distribution, electronic state of the constituent elements on the sample surface, and electrical properties of the synthesized P-NiCo2O4 and P-NiCo-LDH samples were analyzed using thermogravimetric analysis-differential scanning calorimetry (TGA-DSC), X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV), galvanostatic charge-discharge (GCD), and electrochemical impedance spectroscopy (EIS). The P-NiCo2O4 electrode exhibited a specific capacitance of 1,129 Fg-1 at a current density of 1 Ag-1, while the P-NiCo-LDH electrode displayed a specific capacitance of 1,012 Fg-1 at a current density of 1 Ag-1. When assessing capacity changes for 3,000 cycles, the P-NiCo2O4 electrode exhibited a capacity retention rate of 54%, whereas the P-NiCo-LDH electrode showed a capacity retention rate of 57%.

키워드

과제정보

이 과제는 부산대학교 기본연구지원사업(2년)에 의하여 연구되었음.

참고문헌

  1. W. Liu, J. Bao, L. Xu, M. Guan, Z. Wang, J. Qiu, Y. Huang, J. Xia, Y. Lei, H. Li, NiCo2Osub>4 ultrathin nanosheets with oxygen vacancies as bifunctional electrocatalysts for Zn-air battery, Applied Surface Science, 478 (2019) 552-559.  https://doi.org/10.1016/j.apsusc.2019.01.243
  2. N. Girijaa, S.S. Kuttana, B.N. Nairc, U.N.S. Hareesh, Morphology control in nickel cobaltite synthesised via solution routes for electrochemical applications, Results in Engineering, 15 (2022) 100536. 
  3. G.Z. Chen, Supercapacitor and supercapattery as emerging electrochemical energy stores, International Materials Reviews, 62 (2017) 173-202.  https://doi.org/10.1080/09506608.2016.1240914
  4. B.K. Kim, S. Sy, A. Yu, J. Zhang, Electrochemical supercapacitors for energy storage and conversion, Handbook of Clean Energy Systems, (2015) 1-25. 
  5. F. Wang, X. Wu, X. Yuan, Z. Liu, Y. Zhang, L. Fu, Y. Zhu, Q. Zhou, Y. Wu, W. Huang, Latest advances in supercapacitors: from new electrode materials to novel device designs, Chemical Society Reviews, 46 (2017) 6816-6854  https://doi.org/10.1039/C7CS00205J
  6. J.P. Cheng, B.Q. Wang, S.H. Gong, X.C. Wang, Q.S. Sun, F. Liu, Conformal coatings of NiCo2O4 nanoparticles and nanosheets on carbon nanotubes for supercapacitor electrodes, Ceramics International, 47 (2021) 32727-32735.  https://doi.org/10.1016/j.ceramint.2021.08.169
  7. C. Wang, G. Sui, D. Guo, J. Li, L. Zhang, S. Li, J. X, D. Chai, W. Guo, Structure-designed synthesis of hollow/porous cobalt sulfide/phosphide based materials for optimizing supercapacitor storage properties and hydrogen evolution reaction, Journal of Colloid and Interface Science, 599 (2021) 577-585.  https://doi.org/10.1016/j.jcis.2021.04.118
  8. C. Wang , G. Sui, D. Guo, J. Li, X. Ma, Y. Zhuang, D. Chai, Oxygen vacancies-rich NiCo2O4-4x nanowires assembled on porous carbon derived from cigarette ash: A competitive candidate for hydrogen evolution reaction and supercapacitor, Journal of Energy Storage, 50 (2022) 104280.  https://doi.org/10.1016/j.est.2022.104280
  9. F. Shi, L. Li, X.l. Wang, C.d. Gu, J.p. Tu, Metal oxide/hydroxide-based materials for supercapacitors, RSC Advances, 4 (2014) 41910-41921.  https://doi.org/10.1039/C4RA06136E
  10. R. Kumar, NiCo2O4 nano-/microstructures as high-performance biosensors: a review, Nano-Micro Letters, 12 (2020) 1-52.  https://doi.org/10.1007/s40820-019-0337-2
  11. Y. Li, X. Han, T. Yi, Y. He, X. Li, Review and prospect of NiCo2O4-based composite materials for supercapacitor electrodes, Journal of Energy Chemistry, 31 (2019) 54-78.  https://doi.org/10.1016/j.jechem.2018.05.010
  12. C. Wang, G.Z. Sui, D.X. Guo, J.L. Li, X.Y. Ma, Y. Zhuang, D.F. Chai, Oxygen vacancies-rich NiCo2O4-4x nanowires assembled on porous carbon derived from cigarette ash: A competitive candidate for hydrogen evolution reaction and supercapacitor, Journal of Energy Storage, 50 (2022) 104280. 
  13. L.X. Zhang, S.L. Zhang, K.J. Zhang, G.J. Xu, X. He, S.M. Dong, Z.H. Liu, C.S. Huang, L. Gu, G.L. Cui, Mesoporous NiCo2O4 nanoflakes as electrocatalysts for rechargeable Li-O2 batteries, Chemical Communications, 49 (2013) 3540-3542.  https://doi.org/10.1039/c3cc40393a
  14. W.J. Liu, J. Bao, L. Xu, M.L. Guan, Z.L. Wang, J.X. Qiu, Y.P. Huang, J.X. Xia, Y.C. Lei, H.M. Li, NiCo2O4 ultrathin nanosheets with oxygen vacancies as bifunctional electrocatalysts for Zn-air battery, Applied Surface Science, 478 (2019) 552-559.  https://doi.org/10.1016/j.apsusc.2019.01.243
  15. W. Jiang, F. Hu, S.Y. Yao, Z.P. Sun, X. Wu, Hierarchical NiCo2O4 nanowalls composed of ultrathin nanosheets as electrode materials for supercapacitor and Li ion battery applications, Materials Research Bulletin, 93 (2017) 303-309.  https://doi.org/10.1016/j.materresbull.2017.05.036
  16. L. Zhang, H. Tuan, X. Li, Y. Wang, Hydrothermal synthesis of NiCo2O4 @ NiCo2O4 core-shell nanostructures anchored on Ni foam for efficient oxygen evolution reactions catalysts, Coatings, 12 (2022) 1240. 
  17. K.K. Somashekharappa, S. Rajendrachari, Sustainable development information management of carbon nanomaterial based sensors In: Carbon nanomaterials-based sensors, J. G. Manjunatha, C.M. Hussain Eds., Elsevier Inc. (2022) 3-12. 
  18. S. Rajendrachari, D. Ramakrishna, Functionalized nanomaterial-based electrochemical sensors: a sensitive sensor platform In: Functionalized nanomaterial-based electrochemical sensors, C. M. Hussain, J.G. Manjunatha Eds., Elsevier Inc. (2022) 3-25.
  19. R. Shashanka, G.K. Jayaprakash, P. Bg, M. Kumar, B. Kumara Swamy, Electrocatalytic determination of ascorbic acid using a green synthesised magnetite nano-flake modified carbon paste electrode by cyclic voltammetric method, Materials Research Innovations, 25 (2021) 1-11. https://doi.org/10.1080/14328917.2020.1723981
  20. R. Shashanka, B. Kumara Swamy, Simultaneous electro-generation and electrodeposition of copper oxide nanoparticles on glassy carbon electrode and its sensor application, SN Applied Sciences, 2 (2020) 1-10. https://doi.org/10.1007/s42452-019-1685-8
  21. R. Shashanka, D. Chaira, B.K. Swamy, Electrocatalytic response of duplex and yittria dispersed duplex stainless steel modified carbon paste electrode in detecting folic acid using cyclic voltammetry, International Journal of Electrochemical Science, 10 (2015) 5586-5598.  https://doi.org/10.1016/S1452-3981(23)17279-8
  22. G.Q. Han, Y.R. Liu, W.H. Hu, B. Dong, X. Li, X. Shang, Y.M. Chai, Y.Q. Liu, C.G. Liu, Three dimensional Nickel Oxides/Nickel structure by in situ electrooxidation of nickel foam as robust electrocatalyst for oxygen evolution reaction, Applied Surface Science, 359 (2015) 172-176.  https://doi.org/10.1016/j.apsusc.2015.10.097
  23. C. Zhang, X.P. Geng, S.L. Tang, M. Deng, Y. Du, NiCo2O4@rGO hybrid nanostructures on Ni foam as high-performance supercapacitor electrodes, Journal of Materials Chemistry A, 5 (2017) 5912-5919.  https://doi.org/10.1039/C7TA00571G
  24. H.Y. Li, X.L. Wang, T. Wang, F.X. Xiao, A facile, green and time-saving method to prepare partially crystalline NiFe layered double hydroxide nanosheets on nickel foam for superior OER catalysis, Journal of Alloys and Compounds, 844 (2020) 156224. 
  25. Y.J. Yu, C. Chen, Y.H. Liu, H.L. Yu, S.J. Li, Y.N. Xue, N. Cai, J.Z. Wang, F.Q. Yu, Hierarchical Ni/Ni(OH)2 -NiCo2O4 supported on Ni foam as efficient bifunctional electrocatalysts for water splitting, The Journal of Physical Chemistry C, 126 (2022) 5493-5501.  https://doi.org/10.1021/acs.jpcc.1c07688
  26. G.P. Kamblea, A.A. Kashalea, A.S. Rasalab, S.A. Manea, R.A. Chavana, J.Y. Chang, Y.C. Ling, S.S. Kolekard, A.V. Ghule, Marigold micro-flower like NiCo2O4 grown on flexible stainless-steel mesh as an electrode for supercapacitors, RSC Advances, 11 (2021) 3666-3672.  https://doi.org/10.1039/D0RA09524A
  27. Z.Y. Wang, H.W. Chang, Y.C. Tsai, Synthesis of Bimetallic Ni-Co Phosphide Nanosheets for Electrochemical Non-Enzymatic H2O2 Sensing, Nanomaterials, 13 (2023) 66. 
  28. F. Boyer, R. Famulok, S. Minoret, N. Coudurier, C. Jany, P. Gergaud, P. Rodriguez, Development of Ni2P contact technology and its integration on III-V materials for 300 mm Si photonics platform, IEEE Journal of the Electron Devices Society, 10 (2021) 728-736. 
  29. Y. Song, M. Zhao, H. Li, X. Wang, Y. Cheng, L. Ding, S. Fan, S. Chen, Facile preparation of urchin-like NiCo2O4 microspheres as oxidase mimetic for colormetric assay of hydroquinone, Sensors and Actuators B, 255 (2018) 1927-1936. https://doi.org/10.1016/j.snb.2017.08.204
  30. A. Allison, H.A. Andreas, Minimizing the nyquist-plot semi-circle of pseudocapacitive manganese oxides through modification of the oxide-substrate interface resistance, Journal of Power Sources, 426 (2019) 93-96.  https://doi.org/10.1016/j.jpowsour.2019.04.029
  31. W.J. Jeong, Y.C. Oh, S.H. Kim, Electrochemical Property of the Composite Electrode with Graphene Balls and Graphene Oxide for Supercapacitor, Journal of the Korean Institute of Surface Engineering, 53 (2020) 213-218. https://doi.org/10.5695/JKISE.2020.53.5.213