Acknowledgement
We would like to thank the Head of the Papua Health Research and Development Center, who provided access to a high-performance computer for computational data analysis.
References
- Global tuberculosis report 2020. Geneva: World Health Organization, 2020. Accessed 2023 May 27. Available from: https://apps.who.int/iris/bitstream/handle/10665/336069/97892400 13131-eng.pdf.
- Global tuberculosis report 2021. Geneva: World Health Organization, 2021. Accessed 2023 May 27. Available from: https://www.who.int/publications/i/item/9789240037021.
- Global leprosy strategy 2016-2020: accelerating towards a leprosy-free world. Vol. 1, Weekly epidemiological record. Geneva: World Health Organization, 2016. Accessed 2023 May 27. Available from: http://apps.who.int/iris/bitstream/10665/205149/1/B5233.pdf?ua=1.
- Brown AC, Bryant JM, Einer-Jensen K, Holdstock J, Houniet DT, Chan JZ, et al. Rapid whole-genome sequencing of Mycobacterium tuberculosis isolates directly from clinical samples. J Clin Microbiol 2015;53:2230-2237. https://doi.org/10.1128/JCM.00486-15
- Dixit A, Freschi L, Vargas R, Calderon R, Sacchettini J, Drobniewski F, et al. Whole genome sequencing identifies bacterial factors affecting transmission of multidrug-resistant tuberculosis in a high-prevalence setting. Sci Rep 2019;9:5602.
- World Health Organization. The Use of Next-Generation Sequencing Technologies for the Detection of Mutations Associated with Drug Resistance in Mycobacterium tuberculosis Complex: Technical Guide. Geneva: World Health Organization, 2018.
- Coll F, McNerney R, Preston MD, Guerra-Assuncao JA, Warry A, Hill-Cawthorne G, et al. Rapid determination of anti-tuberculosis drug resistance from whole-genome sequences. Genome Med 2015;7:51.
- Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 1998;393:537-544. https://doi.org/10.1038/31159
- Maladan Y, Krismawati H, Wahyuni T, Tanjung R, Awaludin K, Audah KA, et al. The whole-genome sequencing in predicting Mycobacterium tuberculosis drug susceptibility and resistance in Papua, Indonesia. BMC Genomics 2021;22:844.
- Phelan JE, O'Sullivan DM, Machado D, Ramos J, Oppong YE, Campino S, et al. Integrating informatics tools and portable sequencing technology for rapid detection of resistance to anti-tuberculous drugs. Genome Med 2019;11:41.
- Ruesen C, Riza AL, Florescu A, Chaidir L, Editoiu C, Aalders N, et al. Linking minimum inhibitory concentrations to whole genome sequence-predicted drug resistance in Mycobacterium tuberculosis strains from Romania. Sci Rep 2018;8:9676.
- Hazbon MH, Bobadilla del Valle M, Guerrero MI, Varma-Basil M, Filliol I, Cavatore M, et al. Role of embB codon 306 mutations in Mycobacterium tuberculosis revisited: a novel association with broad drug resistance and IS6110 clustering rather than ethambutol resistance. Antimicrob Agents Chemother 2005;49:3794-3802. https://doi.org/10.1128/AAC.49.9.3794-3802.2005
- Bakula Z, Napiorkowska A, Bielecki J, Augustynowicz-Kopec E, Zwolska Z, Jagielski T. Mutations in the embB gene and their association with ethambutol resistance in multidrug-resistant Mycobacterium tuberculosis clinical isolates from Poland. Biomed Res Int 2013;2013:167954.
- Li MC, Chen R, Lin SQ, Lu Y, Liu HC, Li GL, et al. Detecting ethambutol resistance in Mycobacterium tuberculosis isolates in China: a comparison between phenotypic drug susceptibility testing methods and DNA sequencing of embAB. Front Microbiol 2020;11:781.
- Sekiguchi J, Miyoshi-Akiyama T, Augustynowicz-Kopec E, Zwolska Z, Kirikae F, Toyota E, et al. Detection of multidrug resistance in Mycobacterium tuberculosis. J Clin Microbiol 2007;45:179-192. https://doi.org/10.1128/JCM.00750-06
- Sreevatsan S, Stockbauer KE, Pan X, Kreiswirth BN, Moghazeh SL, Jacobs WR Jr, et al. Ethambutol resistance in Mycobacterium tuberculosis: critical role of embB mutations. Antimicrob Agents Chemother 1997;41:1677-1681. https://doi.org/10.1128/AAC.41.8.1677
- Lee AS, Othman SN, Ho YM, Wong SY. Novel mutations within the embB gene in ethambutol-susceptible clinical isolates of Mycobacterium tuberculosis. Antimicrob Agents Chemother 2004;48:4447-4449. https://doi.org/10.1128/AAC.48.11.4447-4449.2004
- Kumar S, Jena L. Understanding rifampicin resistance in tuberculosis through a computational approach. Genomics Inform 2014;12:276-282. https://doi.org/10.5808/GI.2014.12.4.276
- Alatawi EA, Alshabrmi FM. Structural and dynamic insights into the W68L, L85P, and T87A mutations of Mycobacterium tuberculosis inducing resistance to pyrazinamide. Int J Environ Res Public Health 2022;19:1615.
- Kumar V, Sobhia ME. Molecular dynamics assisted mechanistic study of isoniazid-resistance against Mycobacterium tuberculosis InhA. PLoS One 2015;10:e0144635.
- Schwengers O, Hoek A, Fritzenwanker M, Falgenhauer L, Hain T, Chakraborty T, et al. ASA3P: an automatic and scalable pipeline for the assembly, annotation and higher-level analysis of closely related bacterial isolates. PLoS Comput Biol 2020;16:e1007134.
- Schymkowitz J, Borg J, Stricher F, Nys R, Rousseau F, Serrano L. The FoldX web server: an online force field. Nucleic Acids Res 2005;33:W382-W388. https://doi.org/10.1093/nar/gki387
- Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Cheminform 2012;4:17.
- Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, et al. Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 2004;47:1739-1749.
- Jo S, Kim T, Iyer VG, Im W. CHARMM-GUI: a web-based graphical user interface for CHARMM. J Comput Chem 2008;29:1859-1865. https://doi.org/10.1002/jcc.20945
- Lee J, Cheng X, Swails JM, Yeom MS, Eastman PK, Lemkul JA, et al. CHARMM-GUI Input Generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. J Chem Theory Comput 2016;12:405-413. https://doi.org/10.1021/acs.jctc.5b00935
- Huang J, Rauscher S, Nawrocki G, Ran T, Feig M, de Groot BL, et al. CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat Methods 2017;14:71-73. https://doi.org/10.1038/nmeth.4067
- Abraham MJ, Murtola T, Schulz R, Pall S, Smith JC, Hess B, et al. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015;1-2:19-25. https://doi.org/10.1016/j.softx.2015.06.001
- Ali A, Hasan Z, McNerney R, Mallard K, Hill-Cawthorne G, Coll F, et al. Whole genome sequencing based characterization of extensively drug-resistant Mycobacterium tuberculosis isolates from Pakistan. PLoS One 2015;10:e0117771.
- World Health Organization. Catalogue of mutations in Mycobacterium tuberculosis complex and their association with drug resistance. Geneva: World Health Organization, 2021.
- Eldholm V, Norheim G, von der Lippe B, Kinander W, Dahle UR, Caugant DA, et al. Evolution of extensively drug-resistant Mycobacterium tuberculosis from a susceptible ancestor in a single patient. Genome Biol 2014;15:490.
- Mokrousov I, Otten T, Vyshnevskiy B, Narvskaya O. Detection of embB306 mutations in ethambutol-susceptible clinical isolates of Mycobacterium tuberculosis from Northwestern Russia: implications for genotypic resistance testing. J Clin Microbiol 2002;40:3810-3813. https://doi.org/10.1128/JCM.40.10.3810-3813.2002
- Senghore M, Diarra B, Gehre F, Otu J, Worwui A, Muhammad AK, et al. Evolution of Mycobacterium tuberculosis complex lineages and their role in an emerging threat of multidrug resistant tuberculosis in Bamako, Mali. Sci Rep 2020;10:327.
- Gagneux S. Host-pathogen coevolution in human tuberculosis. Philos Trans R Soc Lond B Biol Sci 2012;367:850-859. https://doi.org/10.1098/rstb.2011.0316
- Coscolla M, Gagneux S. Consequences of genomic diversity in Mycobacterium tuberculosis. Semin Immunol 2014;26:431-444. https://doi.org/10.1016/j.smim.2014.09.012
- Kato-Maeda M, Shanley CA, Ackart D, Jarlsberg LG, Shang S, Obregon-Henao A, et al. Beijing sublineages of Mycobacterium tuberculosis differ in pathogenicity in the guinea pig. Clin Vaccine Immunol 2012;19:1227-1237. https://doi.org/10.1128/CVI.00250-12
- Abdelhaleem A, Hershan A, Agarwal P, Farasani A, Omar SV, Ismail A, et al. Whole-genome sequencing of a Mycobacterium tuberculosis strain belonging to lineage 1 (Indo-Oceanic) and the East African Indian spoligotype, isolated in Jazan, Saudi Arabia. Microbiol Resour Announc 2020;9:e00717-20. https://doi.org/10.1128/MRA.00717-20
- Huang Y, Zhang X, Suo H. Interaction between beta-lactoglobulin and EGCG under high-pressure by molecular dynamics simulation. PLoS One 2021;16:e0255866.
- Krebs BB, De Mesquita JF. Amyotrophic lateral sclerosis type 20: in silico analysis and molecular dynamics simulation of hnRNPA1. PLoS One 2016;11:e0158939.