Acknowledgement
This material was based on work partially supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. NRF-2022M3J6A1084843, No. NRF-2021R1C1C1013936). This work was also partially supported by the Institute of Information & communications Technology Planning & Evaluation (IITP) grant (No. 2020-0- 01441, No. RS-2022-00155857, Artificial Intelligence Convergence Research Center (Chungnam National University)). Part of this study has been published as a PhD thesis by the first author under the supervision of the co-authors (Lee E. Advanced Bayesian models for high-dimensional biomedical data. Ph.D. Dissertation. Chapel Hill: The University of North Carolina, 2016).
References
- Risch N, Merikangas K. The future of genetic studies of complex human diseases. Science 1996;273:1516-1517. https://doi.org/10.1126/science.273.5281.1516
- International HapMap Consortium. A haplotype map of the human genome. Nature 2005;437:1299-1320. https://doi.org/10.1038/nature04226
- Bush WS, Moore JH. Chapter 11: Genome-wide association studies. PLoS Comput Biol 2012;8:e1002822.
- Liu J, Wang K, Ma S, Huang J. Regularized regression method for genome-wide association studies. BMC Proc 2011;5 Suppl 9:S67.
- St-Pierre J, Oualkacha K, Bhatnagar SR. Efficient penalized generalized linear mixed models for variable selection and genetic risk prediction in high-dimensional data. Bioinformatics 2023;39:btad063.
- Waldmann P, Meszaros G, Gredler B, Fuerst C, Solkner J. Evaluation of the lasso and the elastic net in genome-wide association studies. Front Genet 2013;4:270.
- Wu TT, Chen YF, Hastie T, Sobel E, Lange K. Genome-wide association analysis by lasso penalized logistic regression. Bioinformatics 2009;25:714-721. https://doi.org/10.1093/bioinformatics/btp041
- Guan Y, Stephens M. Bayesian variable selection regression for genome-wide association studies and other large-scale problems. Ann Appl Stat 2011;5:1780-1815. https://doi.org/10.1214/11-AOAS455
- Williams J, Ferreira MA, Ji T. BICOSS: Bayesian iterative conditional stochastic search for GWAS. BMC Bioinformatics 2022;23:475.
- He Q, Lin DY. A variable selection method for genome-wide association studies. Bioinformatics 2011;27:1-8. https://doi.org/10.1093/bioinformatics/btq600
- Li J, Zhong W, Li R, Wu R. A fast algorithm for detecting genegene interactions in genome-wide association studies. Ann Appl Stat 2014;8:2292-2318.
- Wen C, Pan W, Huang M, Wang X. Sure independence screening adjusted for confounding covariates with ultrahigh dimensional data. Stat Sin 2018;28:293-317.
- Kaplan A, Lock EF, Fiecas M; Alzheimer's Disease Neuroimaging Initiative. Bayesian GWAS with structured and non-local priors. Bioinformatics 2020;36:17-25. https://doi.org/10.1093/bioinformatics/btz518
- Liu J, Huang J, Ma S, Wang K. Incorporating group correlations in genome-wide association studies using smoothed group Lasso. Biostatistics 2013;14:205-219. https://doi.org/10.1093/biostatistics/kxs034
- Lock EF, Dunson DB. Bayesian genome- and epigenome-wide association studies with gene level dependence. Biometrics 2017;73:1018-1028. https://doi.org/10.1111/biom.12649
- Zhang X, Xue F, Liu H, Zhu D, Peng B, Wiemels JL, et al. Integrative Bayesian variable selection with gene-based informative priors for genome-wide association studies. BMC Genet 2014;15:130.
- Bi W, Fritsche LG, Mukherjee B, Kim S, Lee S. A fast and accurate method for genome-wide time-to-event data analysis and its application to UK biobank. Am J Hum Genet 2020;107:222-233. https://doi.org/10.1016/j.ajhg.2020.06.003
- Lee KH. Bayesian variable selection in parametric and semipara-metric high dimensional survival analysis. Ph.D. Dissertation. Columbia: University of Missouri, 2011.
- Lin X, Cai T, Wu MC, Zhou Q, Liu G, Christiani DC, et al. Kernel machine SNP-set analysis for censored survival outcomes in genome-wide association studies. Genet Epidemiol 2011;35:620-631. https://doi.org/10.1002/gepi.20610
- Sha N, Tadesse MG, Vannucci M. Bayesian variable selection for the analysis of microarray data with censored outcomes. Bioinformatics 2006;22:2262-2268. https://doi.org/10.1093/bioinformatics/btl362
- Tanner MA, Wong WH. The calculation of posterior distributions by data augmentation. J Am Stat Assoc 1987;82:528-540. https://doi.org/10.1080/01621459.1987.10478458
- Bhattacharya A, Pati D, Pillai NS, Dunson DB. Dirichlet-Laplace priors for optimal shrinkage. J Am Stat Assoc 2015;110:1479-1490. https://doi.org/10.1080/01621459.2014.960967
- Kalbfleisch JD, Prentice RL. The Statistical Analysis of Failure Time Data. New York: John Wiley & Sons, 2011.
- Lawless JF. Statistical Models and Methods for Lifetime Data. New York: John Wiley & Sons, 2011.
- Meeker WQ, Escobar LA, Pascual FG. Statistical Methods for Reliability Data. 2nd ed. New York: John Wiley & Sons, 2022.
- Nelson WB. Accelerated Testing: Statistical Models, Test Plans, and Data Analysis. New York: John Wiley & Sons, 2009.
- Bedrick EJ, Christensen R, Johnson WO. Bayesian accelerated failure time analysis with application to veterinary epidemiology. Stat Med 2000;19:221-237. https://doi.org/10.1002/(SICI)1097-0258(20000130)19:2<221::AID-SIM328>3.0.CO;2-C
- Christensen R, Johnson W. Modelling accelerated failure time with a Dirichlet process. Biometrika 1988;75:693-704. https://doi.org/10.1093/biomet/75.4.693
- Kuo L, Mallick B. Bayesian semiparametric inference for the accelerated failure-time model. Can J Stat 1997;25:457-472. https://doi.org/10.2307/3315341
- Gupta M, Ibrahim JG. An information matrix prior for Bayesian analysis in generalized linear models with high dimensional data. Stat Sin 2009;19:1641-1663.
- Zellner A. On assessing prior distributions and Bayesian regression analysis with g-prior distributions. In: Bayesian Inference and Decision Techniques: Essays in Honor of Bruno de Finetti (Goel PK, Zellner A, eds.). Amsterdam: Elsevier Science Publishers, 1986. pp. 233-243.
- Newton MA, Noueiry A, Sarkar D, Ahlquist P. Detecting differential gene expression with a semiparametric hierarchical mixture method. Biostatistics 2004;5:155-176. https://doi.org/10.1093/biostatistics/5.2.155
- Storey JD. The positive false discovery rate: a Bayesian interpretation and the q-value. Ann Stat 2003;31:2013-2035. https://doi.org/10.1214/aos/1074290335
- Morris JS, Brown PJ, Herrick RC, Baggerly KA, Coombes KR. Bayesian analysis of mass spectrometry proteomic data using wavelet-based functional mixed models. Biometrics 2008;64:479-489. https://doi.org/10.1111/j.1541-0420.2007.00895.x
- International HapMap 3 Consortium; Altshuler DM, Gibbs RA, Peltonen L, Altshuler DM, Gibbs RA, et al. Integrating common and rare genetic variation in diverse human populations. Nature 2010;467:52-58. https://doi.org/10.1038/nature09298
- Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 2007;81:559-575. https://doi.org/10.1086/519795
- Price AL, Zaitlen NA, Reich D, Patterson N. New approaches to population stratification in genome-wide association studies. Nat Rev Genet 2010;11:459-463. https://doi.org/10.1038/nrg2813
- Bezerra GA, Dobrovetsky E, Seitova A, Fedosyuk S, Dhe-Paganon S, Gruber K. Structure of human dipeptidyl peptidase 10 (DPPY): a modulator of neuronal Kv4 channels. Sci Rep 2015;5:8769.
- Chen T, Shen XF, Chegini F, Gai WP, Abbott CA. Molecular characterisation of a novel dipeptidyl peptidase like protein: its pathological link to Alzheimers disease. Clin Chem Lab Med 2008;46:A13.
- Chen T, Gai WP, Abbott CA. Dipeptidyl peptidase 10 (DPP10(789)): a voltage gated potassium channel associated protein is abnormally expressed in Alzheimer's and other neurodegenerative diseases. Biomed Res Int 2014;2014:209398.
- De Jager PL, Shulman JM, Chibnik LB, Keenan BT, Raj T, Wilson RS, et al. A genome-wide scan for common variants affecting the rate of age-related cognitive decline. Neurobiol Aging 2012;33:1017.
- Guerreiro RJ, Gustafson DR, Hardy J. The genetic architecture of Alzheimer's disease: beyond APP, PSENs and APOE. Neurobiol Aging 2012;33:437-456. https://doi.org/10.1016/j.neurobiolaging.2010.03.025
- Oguri M, Kato K, Yokoi K, Yoshida T, Watanabe S, Metoki N, et al. Assessment of a polymorphism of SDK1 with hypertension in Japanese individuals. Am J Hypertens 2010;23:70-77. https://doi.org/10.1038/ajh.2009.190
- Skoog I, Gustafson D. Update on hypertension and Alzheimer's disease. Neurol Res 2006;28:605-611. https://doi.org/10.1179/016164106X130506
- Huentelman MJ, Papassotiropoulos A, Craig DW, Hoerndli FJ, Pearson JV, Huynh KD, et al. Calmodulin-binding transcription activator 1 (CAMTA1) alleles predispose human episodic memory performance. Hum Mol Genet 2007;16:1469-1477. https://doi.org/10.1093/hmg/ddm097
- Hooli BV, Kovacs-Vajna ZM, Mullin K, Blumenthal MA, Mattheisen M, Zhang C, et al. Rare autosomal copy number variations in early-onset familial Alzheimer's disease. Mol Psychiatry 2014;19:676-681. https://doi.org/10.1038/mp.2013.77
- Yuan M, Lin Y. Model selection and estimation in regression with grouped variables. J R Stat Soc Series B Stat Methodol 2006;68: 49-67. https://doi.org/10.1111/j.1467-9868.2005.00532.x
- Zhang CH. Nearly unbiased variable selection under minimax concave penalty. Ann Stat 2010;38:894-942. https://doi.org/10.1214/09-AOS729
- Huang J, Ma S, Xie H, Zhang CH. A group bridge approach for variable selection. Biometrika 2009;96:339-355. https://doi.org/10.1093/biomet/asp020
- Breheny P. The group exponential lasso for bi-level variable selection. Biometrics 2015;71:731-740. https://doi.org/10.1111/biom.12300
- Breheny P, Huang J. Penalized methods for bi-level variable selection. Stat Interface 2009;2:369-380. https://doi.org/10.4310/SII.2009.v2.n3.a10