Acknowledgement
본 결과물은 환경부의 재원으로 한국환경산업기술원의 가뭄대응 물관리 혁신기술개발사업의 지원을 받아 연구되었습니다(RS-2023-0023194).
References
- American Water Works Association (AWWA ) (2008). Water audits and loss control programs. Washington, DC.
- Balut, A., Brodziak, R., Bylka, J., and Zakrzewski, P. (2018). "Battle of post-disaster response and restauration (BPDRR)." 1st International WDSA/CCWI 2018 Joint Conference, Kingston, Ontario, Canada.
- Basnet, L., Brill, D., Ranjithan, R., and Mahinthakumar, K. (2023). "Supervised machine learning approaches for leak localization in water distribution systems: Impact of complexities of leak characteristics." Journal of Water Resources Planning and Management, Vol. 149, No. 8, 04023032.
- Choi, J., Jeong, G., and Kang, D. (2021). "Multiple leak detection in water distribution networks following seismic damage." Sustainability, Vol. 13, No. 15, 8306.
- Choi, Y.H., Jung, D., Jun, H., and Kim, J.H. (2018). "Improving water distribution systems robustness through optimal valve installation." Water, Vol. 10, No. 9, 1223.
- Daniel, I., Pesantez, J., Letzgus, S., Khaksar Fasaee, M.A., Alghamdi, F., Berglund, E., Mahinthakumar, G., and Cominola, A. (2022). "A sequential pressure-based algorithm for data-driven leakage identification and model-based localization in water distribution networks." Journal of Water Resources Planning and Management, Vol. 148, No.6, 04022025.
- Deb, K., Agrawal, S., Pratap, A., and Meyarivan, T. (2000). "A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA II." Proceedings of the International Conference on Parallel Problem Solving From Nature, Springer, Paris, France, pp. 849-858.
- Jun, S., and Lansey, K.E. (2023). "Convolutional neural network for burst detection in smart water distribution systems." Water Resources Management, Vol. 1, No. 15, pp. 3729-3743. https://doi.org/10.1007/s11269-023-03524-x
- Kingma, D.P., and Ba, J. (2015). "Adam: A method for stochastic optimization." Proceedings 3rd International Conference on Learning Representations. ICLR 2015, San Diego, CA, U.S.
- Lambert, A. (1994). "Accounting for losses: The Bursa and background concept (BABE)." Water and Environment Journal, Vol. 8, No. 2, pp. 205-214. https://doi.org/10.1111/j.1747-6593.1994.tb00913.x
- LeCun, Y., Bottou, L., Orr, G.B., and Muller, K.R. (2002). Efficient backprop. In Neural networks: Tricks of the trade. Springer Berlin Heidelberg, Berlin, Heidelberg, Germany, pp. 9-50.
- Marvin, G., Grbcic, L., Druzeta, S., and Kranjcevic, L. (2023). "Water distribution network leak localization with histogram-based gradient boosting." Journal of Hydroinformatics, Vol. 25, No. 3, pp. 663-684. https://doi.org/10.2166/hydro.2023.102
- Romero-Ben, L., Alves, D., Blesa, J., Cembrano, G., Puig, V., and Duviella, E. (2023). "Leak detection and localization in water distribution networks: review and perspective." Annual Reviews in Control, Vol. 55, pp. 392-419. https://doi.org/10.1016/j.arcontrol.2023.03.012
- Rossman, L., Woo, H., Tryby, M., Shang, F., Janke, R., and Haxton, T. (2020). EPANET 2.2 user manual. U.S. Environmental Protection Agency, Cincinnati, OH, U.S.
- Sophocleous, S., and Nikoloudi, E. (2018). "Simulation-based framework for the restoration of earthquake-damaged water distribution networks using a genetic algorithm: (118)." 1st International WDSA/CCWI 2018 Joint Conference, Kingston, Ontario, Canada.
- Tornyeviadzi, H.M., and Seidu, R. (2023). "Leakage detection in water distribution networks via 1D CNN deep autoencoder for multivariate SCADA data." Engineering Applications of Artificial Intelligence, Vol. 122, 106062.
- Tyagi, V., Pandey, P., Jain, S., and Ramachandran, P. (2023). "A two-stage model for data-driven leakage detection and localization in water distribution networks." Water, Vol. 15, No. 15, 2710.
- Walski, T.M., Brill Jr, E.D., Gessler, J., Goulter, I.C., Jeppson, R.M., Lansey, K., Lee, H.L., Liebman, J.C., Mays, L., Morgan, D.R., and Ormsbee, L. (1987). "Battle of the network models: Epilogue." Journal of water resources Planning and Management, Vol. 113, No. 2, pp. 191-203. https://doi.org/10.1061/(ASCE)0733-9496(1987)113:2(191)
- Wan, X., Farmani, R., and Keedwell, E. (2023). "Real-time gradual leakage detection system for water distribution networks based on MIMO-ANN." EGU General Assembly 2023, Vienna, Austria & Online.
- Yoo, D.G., Kang, D., Jun, H., and Kim, J.H. (2014). "Rehabilitation priority determination of water pipes based on hydraulic importance." Water, Vol. 6, No. 12, pp. 3864-3887. https://doi.org/10.3390/w6123864
- Zanfei, A., Menapace, A., Brentan, B.M., Righetti, M., and Herrera, M. (2022). "Novel approach for burst detection in water distribution systems based on graph neural networks." Sustainable Cities and Society, Vol. 86, 104090.