과제정보
본 연구는 한국해양과학기술원 기관목적사업 "해양에너지지 및 항만·해양구조물 고도화 기술개발(PEA0131)" 과제, 2021년도 정부(교육부) 재원 한국연구재단 기초연구사업(NRF-2021R1F1A 1062223), 2021학년도 부경대학교의 지원(CD20210991)을 받아 수행되었습니다.
참고문헌
- Alsina, J.M., and Caceres, I. (2011). "Sediment suspension events in the inner surf and swash zone. Measurements in large-scale and high-energy wave conditions." Coastal Engineering, Vol. 58, pp. 657-670. https://doi.org/10.1016/j.coastaleng.2011.03.002
- Alsina, J.M., van der Zanden, J., Caceres, I., and Ribberink, J.S. (2018). "The influence of wave groups and wave-swash interactions on sediment transport and bed evolution in the swash zone." Coastal Engineering, Vol. 140, pp. 23-42. https://doi.org/10.1016/j.coastaleng.2018.06.005
- Bae, H., Do, K., Kim, I.H., and Chang, S. (2022). "Proposal of parameter range that offered optimal performance in the coastal morphodynamic model (XBeach) through GLUE." Journal of Ocean Engineering and Technology, Vol. 36, pp. 251-269. https://doi.org/10.26748/KSOE.2022.013
- Briganti, R., Torres-Freyermuth, A., Baldock, T.E., Brocchini, M., Dodd, N., Hsu, T.J., Jiang, Z., Kim, Y., Pintado-Patino, J.C., and Postacchini, M. (2016). "Advances in numerical modelling of swash zone dynamics." Coastal Engineering, Vol. 115, pp. 26-41. https://doi.org/10.1016/j.coastaleng.2016.05.001
- Butt, T., and Russell, P. (2000). "Hydrodynamics and cross-shore sediment transport in the swash-zone of natural beaches: A review." Journal of Coastal Research, Vol. 16, No. 2, pp. 255-268.
- Butt, T., and Russell, P. (2005). "Observations of hydraulic jumps in high-energy swash." Journal of Coastal Research, Vol. 21, pp. 1219-1227. https://doi.org/10.2112/04-0187.1
- Butt, T., Russell, P., Puleo, J.A., Miles, J., and Masselink, G. (2004). "The influence of bore turbulence on sediment transport in the swash and inner surf zones." Continental Shelf Research, Vol. 24, pp. 757-771. https://doi.org/10.1016/j.csr.2004.02.002
- Caceres, I., and Alsina, J.M. (2012). "A detailed, event-by-event analysis of suspended sediment concentration in the swash zone." Continental Shelf Research, Vol. 41, pp. 61-76. https://doi.org/10.1016/j.csr.2012.04.004
- Chandar, D.D.J. (2019). "On overset interpolation strategies and conservation on unstructured grids in OpenFOAM." Computer Physics Communications, Vol. 239, pp. 72-83. https://doi.org/10.1016/j.cpc.2019.01.009
- Chardon-Maldonado, P., Pintado-Patino, J.C., and Puleo, J.A. (2016). "Advances in swash-zone research: Small-scale hydrodynamic and sediment transport processes." Coastal Engineering, Vol. 115, pp. 8-25. https://doi.org/10.1016/j.coastaleng.2015.10.008
- Chen, H., Qian, L., Ma, Z., Bai, W., Li, Y., Causon, D., and Mingham, C. (2019). "Application of an overset mesh based numerical wave tank for modelling realistic free-surface hydrodynamic problems." Ocean Enginering, Vol. 176, pp. 97-117. https://doi.org/10.1016/j.oceaneng.2019.02.001
- Dai, H.-J., Kikkert, G.A., Chen, B.-T., and Pokrajac, D. (2017). "Entrained air in bore-driven swash on an impermeable rough slope." Coastal Engineering, Vol. 121, pp. 26-43. https://doi.org/10.1016/j.coastaleng.2016.10.002
- Deng, B., Zhang, W., Tang, H.S., Jiang, C.B., and Liu, X.J. (2022). "An experimental study on hydrodynamic process, beach profile, and sand migration in swash zone under action of dam-break bore." Applied Ocean Research, Vol. 129, 103391.
- Desombre, J., Morichon, D., and Mory, M. (2013). "RANS v2f simulation of a swash event: Detailed flow structure." Coastal Engineering, Vol. 71, pp. 1-12. https://doi.org/10.1016/j.coastaleng.2012.07.001
- Eley, M. (2022). Horizontal and vertical pore pressure gradients under double dam break driven swash event. Ph. D. Dissertation, University of Delaware, Newark, DE, U.S., pp. 1-86.
- Hai, V.D., Shin, S., Lee, E., Park, H., and Park, J.N. (2022). "Numerical investigation of countermeasure effects on overland flow hydrodynamic and force mitigation in coastal communities." Journal of Ocean Engineering and Technology, Vol. 36, No. 6, pp. 364-397. https://doi.org/10.26748/KSOE.2022.036
- Hirt, C.W., and Nichols, B.D. (1981). "Volume of fluid (VOF) method for the dynamics of free boundaries." Journal of Computational Physics, Vol. 39, pp. 201-225. https://doi.org/10.1016/0021-9991(81)90145-5
- Hughes, M.G., and Moseley, A.S. (2007). "Hydrokinematic regions within the swash zone." Continental Shelf Research, Vol. 27, pp. 2000-2013. https://doi.org/10.1016/j.csr.2007.04.005
- Hwang, Y., Do, K., Kim, I., and Chang, S. (2022). "Field observation and Quasi-3D numerical modeling of coastal hydrodynamic response to submerged structures." Journal of Ocean Engineering and Technology, Vol. 32, No. 2, pp. 68-79.
- Jasak, H., and Tukovic, Z. (2010). "Dynamic mesh handling in Open FOAM applied to fluid-structure interaction simulations." Proceedings of the V European Conference on Computational Fluid Dynamics, ECCOMAS CFD, Lisbon, Portugal, pp. 1-19.
- Kikkert, G.A., O'Donoghue, T., Pokrajac, D., and Dodd, N. (2012). "Experimental study of bore-driven swash hydrodynamics on impermeable rough slopes." Coastal Engineering, Vol. 60, pp. 149-166. https://doi.org/10.1016/j.coastaleng.2011.09.006
- Kim, Y., Zhou, Z., Hsu, T.J., and Puleo, J.A. (2017). "Large eddy simulation of dam-break-driven swash on a rough-planar beach." Journal of Geophysical Research: Oceans, Vol. 122, No. 2, pp. 1274-1296. https://doi.org/10.1002/2016JC012366
- Klostermann, J., Schaake, K., and Schwarze, R. (2013). "Numerical simulation of a single rising bubble by VOF with surface compression." International Journal for Numerical Methods in Fluids, Vol. 71, pp. 960-982. https://doi.org/10.1002/fld.3692
- Launder, B.E., and Sharma, B.I. (1974). "Application of the energy dissipation model of turbulence to the calculation of flow near a spinning disk." Letters in Heat and Mass Transfer, Vol. 1, pp. 131-138.
- Launder, B.E., and Spalding, D.B. (1974). "The numerical computation of turbulent flows." Computer Methods in Applied Mechanics and Engineering, Vol. 3, No. 2, pp. 269-289. https://doi.org/10.1016/0045-7825(74)90029-2
- Lee, J., Jeong, Y.M., Kim, J.S., and Hur, D.S. (2022). "Analysis of hydraulic characteristics according to the cross-section changes in submerged rigid vegetation." Journal of Ocean Engineering and Technology, Vol. 36, No. 5, pp. 326-339. https://doi.org/10.26748/KSOE.2022.028
- Lin, P., and Liu, P.L.-F. (1998). "A numerical study of breaking waves in the surf zone." Journal of Fluid Mechanics, Vol. 359, pp. 239-264. https://doi.org/10.1017/S002211209700846X
- Lin, P., and Xu, W. (2005). "NEWFLUME: A numerical water flume for two-dimensional turbulent free surface flows." Journal of Hydraulic Research, Vol. 44, pp. 79-93. https://doi.org/10.1080/00221686.2006.9521663
- Longo, S., Petti, M., and Losada, I.J. (2002). "Turbulence in the swash and surf zones: A review." Coastal Engineering, Vol. 45, No. 3-4, pp. 129-147. https://doi.org/10.1016/S0378-3839(02)00031-5
- Masselink, G., and Hughes, M.G. (1998). "Field investigation of sediment transport in the swash zone." Continental Shelf Research, Vol. 18, pp. 1179-1199. https://doi.org/10.1016/S0278-4343(98)00027-2
- Masselink, G., and Puleo, J.A. (2006). "Swash-zone morphodynamics." Continental Shelf Research, Vol. 26, No. 5, pp. 661-680. https://doi.org/10.1016/j.csr.2006.01.015
- Masselink, G., Evans, D., Hughes, M.G., and Russell, P. (2005). "Suspended sediment transport in the swash zone of a dissipative beach." Marine Geology, Vol. 216, No. 2005, pp. 169-189. https://doi.org/10.1016/j.margeo.2005.02.017
- Mohammadi, B., and Pironneau, O. (1994). Analysis of the K-epsilon turbulence model. John Wiley and Sons, New York, NY, U.S.
- O'Donoghue, T., Pokrajac, D., and Hondebrink, L. (2010). "Laboratory and numerical study of dambreak-generated swash on impermeable slopes." Coastal Engineering, Vol. 57, pp. 513-530. https://doi.org/10.1016/j.coastaleng.2009.12.007
- Olney, C. (2022). Horizontal pressure gradient and bed shear stress under double dam-break driven swash. Ph. D. Dissertation, University of Delaware, Newark, DE, U.S., pp. 1-96.
- Park, I.R., Kim, K.S., Kim, J., and Van S.H. (2012). "Numerical investigation of the effects of turbulence intensity on dam-break flows." Ocean Enginering, Vol. 42, pp. 176-187. https://doi.org/10.1016/j.oceaneng.2012.01.005
- Petti, M., and Longo, S. (2001). "Turbulence experiments in the swash zone." Coastal Engineering, Vol. 43, pp. 1-24. https://doi.org/10.1016/S0378-3839(00)00068-5
- Pintado-Patino, J.C., Puleo, J.A., Krafft, D., and Torres-Freyermuth, A. (2021). "Hydrodynamics and sediment transport under a dam-break-driven swash: An experimental study." Coastal Engineering, Vol. 170, 103986.
- Puleo, J.A., and Torres-Freyermuth. A. (2016). "The second international workshop on swash-zone processes." Coastal Engineering, Vol. 115, pp. 1-7. https://doi.org/10.1016/j.coastaleng.2015.09.007
- Puleo, J.A., Beach, R.A., Holman, R.A., and Allen, J.S. (2000). "Swash zone sediment suspension and transport and the importance of bore induced turbulence." Journal of Geophysical Research, Vol. 105, No. C7, pp. 17021-17044.
- Puleo, J.A., Farhadzadeh, A., and Kobayashi, N. (2007). "Numerical simulation of swash zone fluid accelerations." Journal of Geophysical Research: Oceans, Vol. 112, C07007.
- Raubenheimer, B., Elgar, S., and Guza, R.T. (2004). "Observations of swash zone velocities: A note on friction coefficients." Journal of Geophysical Research, Vol. 109, No. C1. doi: 10.1029/2003JC001877.
- Salehi, S., and Nilsson, H. (2023). "A semi-implicit slip algorithm for mesh deformation in complex geometries, implemented in OpenFOAM." Computer Physics Communications, Vol. 287, 108703.
- Shih, T.-H., Zhu, J., and Lumley, J.L. (1996). "Calculation of wallbounded complex flows and free shear flows." International Journal for Numerical Methods in Fluids, Vol. 23, pp. 1133-1144. https://doi.org/10.1002/(SICI)1097-0363(19961215)23:11<1133::AID-FLD456>3.0.CO;2-A
- Son, B., and Do, K. (2021). "Optimization of SWAN wave model to improve the accuracy of winter storm wave prediction in the East Sea." Journal of Ocean Engineering and Technology, Vol. 35, pp. 273-286. https://doi.org/10.26748/KSOE.2021.019
- Volkner, S., Brunswig, J., and Rung, T. (2017). "Analysis of nonconservative interpolation techniques in overset grid finitevolume methods." Computers and Fluids, Vol. 148, pp. 39-55. https://doi.org/10.1016/j.compfluid.2017.02.010
- Willmott, C. (1981). "On the validation of models." Physical Geography, Vol. 2, pp. 184-194. https://doi.org/10.1080/02723646.1981.10642213
- Windt, C., Davidson, J., Akram, B., and Ringwood, J.V. (2018). "Performance assessment of the overset grid method for numerical wave tank experiments in the OpenFOAM environment." International Conference on Offshore Mechanics and Arctic Engineering; American Society of Mechanical Engineers, New York, NY, U.S., Vol. 51319, V010T09A006.
- Windt, C., Davidson, J., Chandar, D.D., Faedo, N., and Ringwood, J.V. (2020). "Evaluation of the overset grid method for control studies of wave energy converters in OpenFOAM numerical wave tanks." Journal of Ocean Engineering and Marine Energy, Vol. 6, No. 1, pp. 55-70. https://doi.org/10.1007/s40722-019-00156-5
- Ye, Z., and Zhao, X. (2017). "Investigation of water-water interface in dam break flow with a wet bed." Journal of Hydrology, Vol. 548, pp. 104-120. https://doi.org/10.1016/j.jhydrol.2017.02.055
- Zhang, Q., and Liu, P.L.-F. (2008). "A numerical study of swash flows generated by bores." Coastal Engineering, Vol. 55, pp. 1113-1134. https://doi.org/10.1016/j.coastaleng.2008.04.010