DOI QR코드

DOI QR Code

Seismic resilience of structures research: A bibliometric analysis and state-of-the-art review

  • Tianhao Yu (School of Civil Engineering, Guangzhou University) ;
  • Chao Zhang (School of Civil Engineering, Guangzhou University) ;
  • Xiaonan Niu (School of Civil Engineering, Guangzhou University) ;
  • Rongting Zhuang (School of Civil Engineering, Guangzhou University)
  • Received : 2023.07.25
  • Accepted : 2023.10.10
  • Published : 2023.11.25

Abstract

Seismic resilience (SR) plays a vital role in evaluating and improving performance losses along with saving repair costs of structures from potential earthquakes. To further explore the developments, hotspots, and trend directions of SR, a total of 901 articles are obtained from the Web of Science (WoS) database. CiteSpace software is used to conduct a bibliometric analysis, which indicates an upward trend of publications in SR and explores the relationship of countries, journals, cited references, and keywords based on visual maps and detailed tables. Then, based on the results of the bibliometric analysis, a state-of-the-art review is conducted to further explore the current challenges and trend directions of SR. The trend directions can be divided into five categories: (a) SR assessments of infrastructure structures, (b) multi-hazard quantifications of SR, (c) seismic resilient structures, (d) refining and calibrating analytical models, and (e) multi-criteria decision-making frameworks for sustainability and SR.

Keywords

Acknowledgement

The authors wish to gratefully acknowledge the generous support of this work by the National Natural Science Foundation of China (No. 52378498), the National Key Research and Development Program of China (No. 2022YFC3803003), and the Opening Project of Key Laboratory of Roads and Railway Engineering Safety Control (Shijiazhuang Tiedao University), Ministry of Education, China (No. STDTKF202005).

References

  1. Akiyama, M., Frangopol, D.M. and Ishibashi, H. (2020), "Toward life-cycle reliability-, risk- and resilience-based design and assessment of bridges and bridge networks under independent and interacting hazards: emphasis on earthquake, tsunami and corrosion", Struct. Infrastr. Eng., 16(1), 26-50. https://doi.org/10.1080/15732479.2019.1604770.
  2. Al-Attraqchi, A.Y., Hashemi, M.J. and Al-Mahaidi, R. (2022), "Loss assessment of rigid-frame bridges under horizontal and vertical ground motions", Struct., 35, 243-259. https://doi.org/10.1016/j.istruc.2021.11.014.
  3. Aldrich, D.P. (2011), "The power of people: Social capital's role in recovery from the 1995 Kobe earthquake", Nat. Hazard., 56(3), 595-611. https://doi.org/10.1007/s11069-010-9577-7.
  4. Almufti, I. and Willford, M. (2013), REDiTM Rating System Resilience-Based Earthquake Design Initiative for the Next Generation of Buildings, ARUP, San Francisco, CA, USA.
  5. Andric, J.M. and Lu, D.G. (2017), "Fuzzy methods for prediction of seismic resilience of bridges", Int. J. Disaster Risk Reduct., 22, 458-468. https://doi.org/10.1016/j.ijdrr.2017.01.001.
  6. Anwar, G.A., Dong, Y. and Li, Y. (2020), "Performance-based decision-making of buildings under seismic hazard considering long-term loss, sustainability, and resilience", Struct. Infrastr. Eng., 17(4), 454-470. https://doi.org/10.1080/15732479.2020.1845751.
  7. Artioli, E., Battaglia, R. and Tralli, A. (2017), "Emilia 2012 earthquake and the need of accounting for multi-hazard design paradigm for strategic infrastructures", Eng. Struct., 140, 353-372. https://doi.org/10.1016/j.engstruct.2017.03.004.
  8. Asadi, E., Salman, A.M. and Li, Y. (2019), "Multi-criteria decision-making for seismic resilience and sustainability assessment of diagrid buildings", Eng. Struct., 191, 229-246. https://doi.org/10.1016/j.engstruct.2019.04.049.
  9. ATC (2007), Prioritized Research for Reducing the Seismic Hazards of Existing Buildings, Applied Technology Council (ATC), Redwood City, CA, USA.
  10. Aydin, N.Y., Duzgun, H.S. and Wenzel, F. (2018), "Integration of stress testing with graph theory to assess the resilience of urban road networks under seismic hazards", Nat. Hazard., 91(1), 37-68. https://doi.org/10.1007/s11069-017-3112-z.
  11. Banerjee, S. and Shinozuka, M. (2008), "Experimental verification of bridge seismic damage states quantified by calibrating analytical models with empirical field data", Earthq. Eng. Eng. Vib., 7(4), 383-393. https://doi.org/10.1007/s11803-008-1010-9.
  12. Banerjee, S., Vishwanath, B.S. and Devendiran, D.K. (2019), "Multihazard resilience of highway bridges and bridge networks: A review", Struct. Infrastr. Eng., 15(12), 1694-1714. https://doi.org/10.1080/15732479.2019.1648526.
  13. Bavandi, M., Moghadam, A.S. and Mansoori, M.R. (2021), "Introducing a new seismic efficiency index of post-tensioned self-centering steel moment connections", Struct., 33, 463-483. https://doi.org/10.1016/j.istruc.2021.04.015.
  14. Billah, A. and Alam, M.S. (2016), "Bond behavior of smooth and sand-coated shape memory alloy (SMA) rebar in concrete", Struct., 5, 186-195. https://doi.org/10.1016/j.istruc.2015.11.005.
  15. Bocchini, P. and Frangopol, D.M. (2012), "Optimal resilience- and cost-based postdisaster intervention prioritization for bridges along a highway segment", J. Bridge Eng., 17(1), 117-129. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000201.
  16. Bocchini, P., Frangopol, D.M. and Ummenhofer, T. (2014), "Resilience and sustainability of civil infrastructure: Toward a unified approach", J. Infrastr. Syst., 20(2), 04014004. https://doi.org/10.1061/(ASCE)IS.1943-555X.0000177.
  17. Bruneau, M., Chang, S.E. and Eguchi, R.T. (2003), "A framework to quantitatively assess and enhance the seismic resilience of communities", Earthq. Spectra, 19(4), 733-752. https://doi.org/10.1193/1.1623497.
  18. Bruneau, M. and Reinhorn, A. (2007), "Exploring the concept of seismic resilience for acute care facilities", Earthq. Spectra, 23(1), 41-62. https://doi.org/10.1193/1.2431396.
  19. Burton, H.V., Deierlein, G. and Lallemant, D. (2016), "Framework for incorporating probabilistic building performance in the assessment of community seismic resilience", J. Struct. Eng., 142(8), C4015007. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001321.
  20. Calvi, G.M. (2013), "Choices and criteria for seismic strengthening", J. Earthq. Eng., 17(6), 769-802. https://doi.org/10.1080/13632469.2013.781556.
  21. Cao, L., Laflamme, S. and Hong, J. (2018), "Input space dependent controller for civil structures exposed to multi-hazard excitations", Eng. Struct., 166, 286-301. https://doi.org/10.1016/j.engstruct.2018.03.083.
  22. Cao, T., Han, D. and Song, X. (2021), "Past, present, and future of global seawater intrusion research: A bibliometric analysis", J. Hydrol., 603, 126844. https://doi.org/10.1016/j.jhydrol.2021.126844.
  23. Castiglioni, C.A., Kanyilmaz, A. and Calado, L. (2012), "Experimental analysis of seismic resistant composite steel frames with dissipative devices", J. Constr. Steel Res., 76, 1-12. https://doi.org/10.1016/j.jcsr.2012.03.027.
  24. CEN (2005), Eurocode 8: Design of Structures for Earthquake Resistance - Part 3: Assessment and Retrofitting of Buildings, European Committee for Standardization, Brussels, Belgium.
  25. Chalabi, M., Naderpour, H. and Mirrashid, M. (2022), "Seismic resilience index for RC moment frames of school buildings using neuro-fuzzy approach", Nat. Hazard., 114(1), 1-26. https://doi.org/10.1007/s11069-022-05377-w.
  26. Cheng, Y., Elsayed, E.A. and Huang, Z. (2022), "Systems resilience assessments: A review, framework and metrics", Int. J. Product. Res., 60(2), 595-622. https://doi.org/10.1080/00207543.2021.1971789.
  27. Chien-Kuo, C., I-Hsiang, L. and Santoso, D. (2022), "Resilience-considered seismic risk assessment and mitigation of a retrofitting method for a bridge under multiple seismic events", J. Earthq. Eng., 26(15), 7979-7999. https://doi.org/10.1080/13632469.2021.1982797.
  28. China, B.S.P.O. (2020), Standard for Seisimic Resilience Assesment of Buildings (GB/T 38591-2020), the National Standardization Management Committee, Beijing, China.
  29. Chompuchan, C. and Lin, C.Y. (2017), "Assessment of forest recovery at Wu-Ling fire scars in Taiwan using multi temporal Landsat imagery", Ecol. Indicat., 79, 196-206. https://doi.org/10.1016/j.ecolind.2017.04.038.
  30. Cilsalar, H. (2022), "Post-earthquake fire collapse performance and residual story drift fragility of two-dimensional structural frames", Struct., 38, 1438-1452. https://doi.org/10.1016/j.istruc.2022.03.001.
  31. Cimellaro, G.P., Malavisi, M. and Mahin, S. (2018), "Factor analysis to evaluate hospital resilience", ASCE-ASME J. Risk Uncertain. Eng. Syst. Part A Civil Eng., 4(1), 04018002. https://doi.org/10.1061/AJRUA6.0000952.
  32. Cimellaro, G.P., Reinhorn, A.M. and Bruneau, M. (2010a), "Framework for analytical quantification of disaster resilience", Eng. Struct., 32(11), 3639-3649. https://doi.org/10.1016/j.engstruct.2010.08.008.
  33. Cimellaro, G.P., Reinhorn, A.M. and Bruneau, M. (2010b), "Seismic resilience of a hospital system", Struct. Infrastr. Eng., 6(1-2), 127-144. https://doi.org/10.1080/15732470802663847.
  34. Copiello, S. (2016), "Economic implications of the energy issue: Evidence for a positive non-linear relation between embodied energy and construction cost", Energy Build., 123, 59-70. https://doi.org/10.1016/j.enbuild.2016.04.054.
  35. Dadkhah, H. and Mohebbi, M. (2021), "A multi-hazard-based design approach for LRB isolation system against explosion and earthquake", Earthq. Struct., 21(1), 101-117. https://doi.org/10.12989/eas.2021.21.1.101.
  36. Darani, F.M., Zarnani, P. and Veismoradi, S. (2021), "Resilient slip friction joint performance: Component analysis, spring model and anti-locking mechanism", Struct., 33, 3897-3911. https://doi.org/10.1016/j.istruc.2021.06.075.
  37. Dong, Y. and Frangopol, D.M. (2015), "Risk and resilience assessment of bridges under mainshock and aftershocks incorporating uncertainties", Eng. Struct., 83, 198-208. https://doi.org/10.1016/j.engstruct.2014.10.050.
  38. Donthu, N., Kumar, S. and Mukherjee, D. (2021), "How to conduct a bibliometric analysis: An overview and guidelines", J. Business Res., 133, 285-296. https://doi.org/10.1016/j.jbusres.2021.04.070.
  39. Fang, C. (2022), "SMAs for infrastructures in seismic zones: A critical review of latest trends and future needs", J. Build. Eng., 57, 104918. https://doi.org/10.1016/j.jobe.2022.104918.
  40. Favvata, M.J., Naoum, M.C. and Karayannis, C.G. (2013), "Limit states of RC structures with first floor irregularities", Struct. Eng. Mech., 47(6), 791-818. https://doi.org/10.12989/sem.2013.47.6.791.
  41. FEMA (2012), Seismic Performance Assessment of Buildings, Federal Emergency Management Agency, Washington D.C., USA.
  42. Frangopol, D.M. and Soliman, M. (2016), "Life-cycle of structural systems: Recent achievements and future directions", Struct. Infrastr. Eng., 12(1), 1-20. https://doi.org/10.1080/15732479.2014.999794.
  43. Fu, Z., Gao, R. and Li, Y. (2021), "Measuring seismic resilience of building portfolios based on innovative damage ratio assessment model", Struct., 30, 1109-1126. https://doi.org/10.1016/j.istruc.2021.01.041.
  44. Gkournelos, P.D., Triantafillou, T.C. and Bournas, D.A. (2021), "Seismic upgrading of existing reinforced concrete buildings: A state-of-the-art review", Eng. Struct., 240, 112273. https://doi.org/10.1016/j.engstruct.2021.112273.
  45. Golzar, F.G., Rodgers, G.W. and Chase, J.G. (2018), "Design and experimental validation of a re-centring viscous dissipater", Struct., 13, 193-200. https://doi.org/10.1016/j.istruc.2017.12.008.
  46. Goncalves, L.A.P.J. and Ribeiro, P.J.G. (2020), "Resilience of urban transportation systems. Concept, characteristics, and methods", J. Transp. Geograph., 85, 102727. https://doi.org/10.1016/j.jtrangeo.2020.102727.
  47. Guidotti, R., Chmielewski, H. and Unnikrishnan, V. (2016), "Modeling the resilience of critical infrastructure: The role of network dependencies", Sustainab. Resilient Infrastr., 1(3-4), 153-168. https://doi.org/10.1080/23789689.2016.1254999.
  48. Hariri-Ardebili, M.A. (2018), "Risk, reliability, resilience (R-3) and beyond in dam engineering: A state-of-the-art review", Int. J. Disaster Risk Reduct., 31, 806-831. https://doi.org/10.1016/j.ijdrr.2018.07.024.
  49. Hassan, E.M. and Mahmoud, H. (2019), "Full functionality and recovery assessment framework for a hospital subjected to a scenario earthquake event", Eng. Struct., 188, 165-177. https://doi.org/10.1016/j.engstruct.2019.03.008.
  50. Hassan, E.M. and Mahmoud, H. (2020), "An integrated socio-technical approach for post-earthquake recovery of interdependent healthcare system", Reliab. Eng. Syst. Saf., 201, 106953. https://doi.org/10.1016/j.ress.2020.106953.
  51. He, W., Zeng, Y. and Wang, C. (2020), "Theoretical and experimental studies on tapered plate-rubber isolator", Struct., 27, 1977-1993. https://doi.org/10.1016/j.istruc.2020.08.015.
  52. Henry, D. and Ramirez-Marquez, J.E. (2012), "Generic metrics and quantitative approaches for system resilience as a function of time", Reliab. Eng. Syst. Saf., 99, 114-122. https://doi.org/10.1016/j.ress.2011.09.002.
  53. Hosseini, F., Gencturk, B. and Jain, A. (2019), "Optimal design of bridge columns constructed with engineered cementitious composites and Cu-Al-Mn superelastic alloys", Eng. Struct., 198, 109531. https://doi.org/10.1016/j.engstruct.2019.109531.
  54. Hosseini, S., Barker, K. and Ramirez-Marquez, J.E. (2016), "A review of definitions and measures of system resilience", Reliab. Eng. Syst. Saf., 145, 47-61. https://doi.org/10.1016/j.ress.2015.08.006.
  55. Hosseinzadeh, S. and Galal, K. (2021), "Probabilistic seismic resilience quantification of a reinforced masonry shear wall system with boundary elements under bi-directional horizontal excitations", Eng. Struct., 247, 113023. https://doi.org/10.1016/j.engstruct.2021.113023.
  56. Jacques, C.C., McIntosh, J. and Giovinazzi, S. (2014), "Resilience of the canterbury hospital system to the 2011 Christchurch earthquake", Earthq. Spectra, 30(1), 533-554. https://doi.org/10.1193/032013EQS074M.
  57. Jain, A. and Surana, M. (2022), "Floor displacement-based torsional amplification factors for seismic design of acceleration-sensitive non-structural components in torsionally irregular RC buildings", Eng. Struct., 254, 113871. https://doi.org/10.1016/j.engstruct.2022.113871.
  58. Jaiswal, K.S., Bausch, D. and Chen, R. (2015), "Estimating annualized earthquake losses for the conterminous united states", Earthq. Spectra, 31, S221-S243. https://doi.org/10.1193/010915EQS005M.
  59. Joyner, M.D. and Sasani, M. (2020), "Building performance for earthquake resilience", Eng. Struct., 210, 110371. https://doi.org/10.1016/j.engstruct.2020.110371.
  60. Julia, P.B. and Ferreira, T.M. (2021), "From single- to multi-hazard vulnerability and risk in historic urban areas: A literature review", Nat. Hazard., 108(1), 93-128. https://doi.org/10.1007/s11069-021-04734-5.
  61. Kameshwar, S., Cox, D.T. and Barbosa, A.R. (2019), "Probabilistic decision-support framework for community resilience: Incorporating multi-hazards, infrastructure interdependencies, and resilience goals in a Bayesian network", Reliab. Eng. Syst. Saf., 191, 106568. https://doi.org/10.1016/j.ress.2019.106568.
  62. Kameshwar, S. and Padgett, J.E. (2014), "Multi-hazard risk assessment of highway bridges subjected to earthquake and hurricane hazards", Eng. Struct., 78, 154-166. https://doi.org/10.1016/j.engstruct.2014.05.016.
  63. Karamlou, A. and Bocchini, P. (2017), "Functionality-fragility surfaces", Earthq. Eng. Struct. Dyn., 46(10), 1687-1709. https://doi.org/10.1002/eqe.2878.
  64. Karayannis, C., Golias, E. and Kalogeropoulos, G.I. (2022), "Influence of carbon fiber-reinforced ropes applied as external diagonal reinforcement on the shear deformation of RC joints", Fib., 10(3), 28. https://doi.org/10.3390/fib10030028.
  65. Karayannis, C.G., Chalioris, C.E. and Sirkelis, G.M. (2008), "Local retrofit of exterior RC beam-column joints using thin RC jackets - An experimental study", Earthq. Eng. Struct. Dyn., 37(5), 727-746. https://doi.org/10.1002/eqe.783.
  66. Kong, J.J. and Simonovic, S.P. (2019), "Probabilistic multiple hazard resilience model of an interdependent infrastructure system", Risk Anal., 39(8), 1843-1863. https://doi.org/10.1111/risa.13305.
  67. Li, J.C., Wang, T. and Shang, Q.X. (2019), "Probability-based seismic reliability assessment method for substation systems", Earthq. Eng. Struct. Dyn., 48(3), 328-346. https://doi.org/10.1002/eqe.3138.
  68. Li, J.C., Wang, T. and Shang, Q.X. (2021), "Probability-based seismic resilience assessment method for substation systems", Struct. Infrastr. Eng., 18(1), 71-83. https://doi.org/10.1080/15732479.2020.1835998.
  69. Li, Y.M., Fu, Z.J. and Tan, P. (2022a), "Life cycle resilience assessment of RC frame structures considering multiple-hazard", Struct., 44, 1844-1862. https://doi.org/10.1016/j.istruc.2022.08.092.
  70. Li, Y.W., Wang, Y.Z. and Wang, Y.B. (2022b), "Application of seismic resilient energy-dissipative rocking columns with HSS tension braces in steel frames", Eng. Struct., 253, 113812. https://doi.org/10.1016/j.engstruct.2021.113812.
  71. Liu, W. and Song, Z. (2020a), "Review of studies on the resilience of urban critical infrastructure networks", Reliab. Eng. Syst. Saf., 193, 107888. https://doi.org/10.1016/j.ress.2019.106617.
  72. Liu, W. and Song, Z.Y. (2020b), "Review of studies on the resilience of urban critical infrastructure networks", Reliab. Eng. Syst. Saf., 193, 106617. https://doi.org/10.1016/j.ress.2019.106617.
  73. Liu, W., Xu, H. and He, W. (2018), "Static test and seismic dynamic response of an innovative 3D seismic isolation system", J. Struct. Eng., 144(12), 04018212. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002195.
  74. Masoomi, H., Burton, H. and Tomar, A. (2020), "Simulation-based assessment of postearthquake functionality of buildings with disruptions to cross-dependent utility networks", J. Struct. Eng., 146(5), 04020070. https://doi.org/10.1061/(asce)st.1943-541x.0002555.
  75. Matthews, J.C. (2016), "Disaster resilience of critical water infrastructure systems", J. Struct. Eng., 142(8), C6015001. https://doi.org/10.1061/(asce)st.1943-541x.0001341.
  76. Mayes, R.L. and Reis, E. (2015), "The U.S. Resiliency Council (USRC) and the building rating system", Improving the Seismic Performance of Existing Buildings and Other Structures 2015, San Francisco, CA, USA, December.
  77. Meng, B., Du, Q. and Li, F. (2022), "Seismic performance of steel connections with double-leg energy dissipation cover plates", Struct., 43, 1945-1961. https://doi.org/10.1016/j.istruc.2022.07.007.
  78. Miles, S.B. and Chang, S.E. (2006), "Modeling community recovery from earthquakes", Earthq. Spectra, 22(2), 439-458. https://doi.org/10.1193/1.2192847.
  79. Mohammadgholibeyki, N., Nazari, F. and Venkatraj, V. (2021), "A decision-making framework for life-cycle energy and seismic loss assessment of buildings", Struct. Infrastr. Eng., 19(7), 875-889. https://doi.org/10.1080/15732479.2021.1983613.
  80. Mohebbi, S., Zhang, Q. and Wells, E.C. (2020), "Cyber-physical-social interdependencies and organizational resilience: A review of water, transportation, and cyber infrastructure systems and processes", Sustainab. Cities Soc., 62, 102327. https://doi.org/10.1016/j.scs.2020.102327.
  81. Mottahedi, A., Sereshki, F. and Ataei, M. (2021), "Resilience estimation of critical infrastructure systems: Application of expert judgment", Reliab. Eng. Syst. Saf., 215, 107849. https://doi.org/10.1016/j.ress.2021.107849.
  82. Nocera, F. and Gardoni, P. (2019), "A ground-up approach to estimate the likelihood of business interruption", Int. J. Disaster Risk Reduct., 41, 101314. https://doi.org/10.1016/j.ijdrr.2019.101314.
  83. Onat, N.C., Kucukvar, M. and Tatari, O. (2014), "Integrating triple bottom line input-output analysis into life cycle sustainability assessment framework: The case for US buildings", Int. J. Life Cycle Assess., 19(8), 1488-1505. https://doi.org/10.1007/s11367-014-0753-y.
  84. Ouyang, M., Duenas-Osorio, L. and Min, X. (2012), "A three-stage resilience analysis framework for urban infrastructure systems", Struct. Saf., 36-37, 23-31. https://doi.org/10.1016/j.strusafe.2011.12.004.
  85. Ouyang, M., Hong, L. and Mao, Z.J. (2009), "A methodological approach to analyze vulnerability of interdependent infrastructures", Simul. Modell. Pract. Theory, 17(5), 817-828. https://doi.org/10.1016/j.simpat.2009.02.001.
  86. Ouyang, M. and Wang, Z. (2015), "Resilience assessment of interdependent infrastructure systems: With a focus on joint restoration modeling and analysis", Reliab. Eng. Syst. Saf., 141, 74-82. https://doi.org/10.1016/j.ress.2015.03.011.
  87. Ozturk, B., Cetin, H. and Aydin, E. (2022), "Optimum vertical location and design of multiple tuned mass dampers under seismic excitations", Struct., 41, 1141-1163. https://doi.org/10.1016/j.istruc.2022.05.014.
  88. Palermo, A., Pampanin, S. and Calvi, G.M. (2005), "Concept and development of hybrid solutions for seismic resistant bridge systems", J. Earthq. Eng., 9(6), 899-921. https://doi.org/10.1142/S1363246905002328.
  89. Pang, Y.T., Meng, R. and Li, C.D. (2022), "A probabilistic approach for performance-based assessment of highway bridges under post-earthquake induced landslides", Soil Dyn. Earthq. Eng., 155, 107207. https://doi.org/10.1016/j.soildyn.2022.107207.
  90. Panzera, I., Morelli, F. and Salvatore, W. (2020), "Seismic multi-level optimization of dissipative re-centering systems", Earthq. Struct., 18(1), 129-145. https://doi.org/10.12989/eas.2020.18.1.129.
  91. Phillips, R., Troup, L. and Fannon, D. (2017), "Do resilient and sustainable design strategies conflict in commercial buildings? A critical analysis of existing resilient building frameworks and their sustainability implications", Energy Build., 146, 295-311. https://doi.org/10.1016/j.enbuild.2017.04.009.
  92. Pishnamazzadeh, M., Sepehri, M.M. and Panahi, A. (2021), "Reallocation of unoccupied beds among requesting wards", J. Ambient Intell. Human. Comput., 12(1), 1449-1469. https://doi.org/10.1007/s12652-020-02215-4.
  93. Poter, K., Kiremidjian, A. and Legrue, J. (2001), "Assembly-based vulnerability of buildings and its use in performance evaluation", Earthq. Spectra, 17(2), 291-312. https://doi.org/10.1193/1.1586176.
  94. Pourghasemi, H.R., Kariminejad, N. and Amiri, M. (2020), "Assessing and mapping multi-hazard risk susceptibility using a machine learning technique", Sci. Rep., 10(1), 3203. https://doi.org/10.1038/s41598-020-60191-3.
  95. Qian, J. and Dong, Y. (2020), "Multi-criteria decision making for seismic intensity measure selection considering uncertainty", Earthq. Eng. Struct. Dyn., 49(11), 1095-1114. https://doi.org/10.1002/eqe.3280.
  96. Rajesh, R. (2019), "Social and environmental risk management in resilient supply chains: A periodical study by the Grey-Verhulst model", Int. J. Prod. Res., 57(11), 3748-3765. https://doi.org/10.1080/00207543.2019.1566656.
  97. Ren, F.M., Zhou, Y. and Zhang, J.B. (2013), "Experimental study on seismic performance of CFST frame structures with energy dissipation devices", J. Constr. Steel Res., 90, 120-132. https://doi.org/10.1016/j.jcsr.2013.07.032.
  98. Rinaldi, S.A., Peerenboom, J.P. and Kelly, T.K. (2001), "Identifying, understanding, and analyzing critical infrastructure interdependencies", IEEE Control Syst. Mag., 21(6), 11-25. https://doi.org/10.1109/37.969131.
  99. Rota, M., Bracchi, S. and Iorio, D. (2021), "Typological seismic fragility assessment of old railway stations by nonlinear time history analysis", Struct. Infrastr. Eng., 17(12), 1667-1683. https://doi.org/10.1080/15732479.2020.1822884.
  100. Salman, A.M. and Li, Y. (2018), "A probabilistic framework for multi-hazard risk mitigation for electric power transmission systems subjected to seismic and hurricane hazards", Struct. Infrastr. Eng., 14(11), 1499-1519. https://doi.org/10.1080/15732479.2018.1459741.
  101. Shahverdi, M., Czaderski, C. and Motavalli, M. (2016), "Iron-based shape memory alloys for prestressed near-surface mounted strengthening of reinforced concrete beams", Constr. Build. Mater., 112, 28-38. https://doi.org/10.1016/j.conbuildmat.2016.02.174.
  102. Shang, Q., Qiu, L. and Wang, T. (2022a), "Experimental and analytical study on performance of seismic sway braces for suspended piping systems", J. Build. Eng., 57, 104826. https://doi.org/10.1016/j.jobe.2022.104826.
  103. Shang, Q.X., Li, J.C. and Du, C.B. (2022b), "Seismic fragility analysis of freestanding hospital cabinets based on shaking table tests", J. Earthq. Eng., 27(8), 1993-2012. https://doi.org/10.1080/13632469.2022.2091684.
  104. Shang, Q.X., Li, J.C. and Wang, T. (2022c), "Floor acceleration response spectra of elastic reinforced concrete frames", J. Build. Eng., 45, 103558. https://doi.org/10.1016/j.jobe.2021.103558.
  105. Shang, Q.X., Qiu, L. and Wang, T. (2022d), "Experimental and analytical study on performance of seismic sway braces for suspended piping systems", J. Build. Eng., 57, 104826. https://doi.org/10.1016/j.jobe.2022.104826.
  106. Sun, D., Yang, Y. and Ma, Y. (2022), "Seismic performance of resilient beam-column connection using replaceable stiffener angle steel", J. Constr. Steel Res., 196, 107370. https://doi.org/10.1016/j.jcsr.2022.107370.
  107. Talebiyan, H., Leelardcharoen, K. and Duenas-Osorio, L. (2021), "Congestion and observability across interdependent power and telecommunication networks under seismic hazard", Earthq. Spectra, 37(4), 2892-2919. https://doi.org/10.1177/87552930211026690.
  108. Tamizharasi, G., Prasad, A.M. and Murty, C.V.R. (2021), "Lateral-torsional seismic behaviour of plan unsymmetric buildings", Earthq. Struct., 20(3), 239-260. https://doi.org/10.12989/eas.2021.20.3.239.
  109. Thacker, S., Kelly, S. and Pant, R. (2018), "Evaluating the Benefits of Adaptation of Critical Infrastructures to Hydrometeorological Risks", Risk Anal., 38(1), 134-150. https://doi.org/10.1111/risa.12839.
  110. Tian, Y., Lin, K.Q. and Zhang, L. (2021), "Novel seismic-progressive collapse resilient super-tall building system", J. Build. Eng., 41, 102790. https://doi.org/10.1016/j.jobe.2021.102790.
  111. Tomar, A., Burton, H.V. and Mosleh, A. (2022), "Dynamic updating of post-earthquake damage and functional restoration forecasts of water distribution systems using Bayesian inferencing", Earthq/ Spectra, 38(1), 109-127. https://doi.org/10.1177/87552930211038016.
  112. Tomar, A., Burton, H.V. and Mosleh, A. (2020), "Hindcasting the functional loss and restoration of the napa water system following the 2014 earthquake using discrete-event simulation", J. Infrastr. Syst., 26(4), 04020035. https://doi.org/10.1061/(ASCE)IS.1943-555X.0000574.
  113. Tran, H.T., Balchanos, M. and Domercant, J.C. (2017), "A framework for the quantitative assessment of performance-based system resilience", Reliab. Eng. Syst. Saf., 158, 73-84. https://doi.org/10.1016/j.ress.2016.10.014.
  114. Triantafillou, T.C., Papanicolaou, C.G. and Zissimopoulos, P. (2006), "Concrete confinement with textile-reinforced mortar jackets", ACI Struct. J., 103(1), 28-37. https://doi.org/10.1109/VAST.2006.261436.
  115. Tsiavos, A., Markic, T. and Schlatter, D. (2021), "Shaking table investigation of inelastic deformation demand for a structure isolated using friction-pendulum sliding bearings", Struct., 31, 1041-1052. https://doi.org/10.1016/j.istruc.2021.02.040.
  116. Tsonos, A.D.G. (2010), "Performance enhancement of R/C building columns and beam-column joints through shotcrete jacketing", Eng. Struct., 32(3), 726-740. https://doi.org/10.1016/j.engstruct.2009.12.001.
  117. Tsonos, A.G. (2014), "An innovative solution for strengthening of old R/C structures and for improving the FRP strengthening method", Struct. Monit. Maint., 1(3), 323-338. https://doi.org/10.12989/SMM.2014.1.3.323.
  118. Venkittaraman, A. and Banerjee, S. (2014), "Enhancing resilience of highway bridges through seismic retrofit", Earthq. Eng. Struct. Dyn., 43(8), 1173-1191. https://doi.org/10.1002/eqe.2392.
  119. Vugrin, E.D., Verzi, S.J. and Finley, P.D. (2015), "Modeling hospitals' adaptive capacity during a loss of infrastructure services", J. Healthcare Eng., 6(1), 85-120. https://doi.org/10.1260/2040-2295.6.1.85.
  120. Wang, B., Nishiyama, M. and Zhu, S. (2021a), "Development of novel self-centering steel coupling beams without beam elongation for earthquake resilience", Eng. Struct., 232, 111827. https://doi.org/10.1016/j.engstruct.2020.111827.
  121. Wang, B. and Zhu, S. (2022), "Cyclic behavior of iron-based shape memory alloy bars for high-performance seismic devices", Eng. Struct., 252, 113588. https://doi.org/10.1016/j.engstruct.2021.113588.
  122. Wang, B., Zhu, S. and Casciati, F. (2020), "Experimental study of novel self-centering seismic base isolators incorporating superelastic shape memory alloys", J. Struct. Eng., 146(7), 04020129. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002679.
  123. Wang, T., Shang, Q. and Li, J. (2021b), "Seismic force demands on acceleration-sensitive nonstructural components: A state-of-the-art review", Earthq. Eng. Eng. Vib., 20(1), 39-62. https://doi.org/10.1007/s11803-021-2004-0.
  124. Wang, T., Shang, Q.X. and Wang, X.T. (2018), "Experimental validation of RC shear wall structures with hybrid coupling beams", Soil Dyn. Earthq. Eng., 111, 14-30. https://doi.org/10.1016/j.soildyn.2018.04.021.
  125. Wang, W., Wang, X.X. and Li, A.Q. (2022), "Coned disc spring compound vertical isolation: Testing and modelling", J. Earthq. Eng., 26(9), 4877-4909. https://doi.org/10.1080/13632469.2020.1850573.
  126. Yang, B., Zhang, L. and Zhang, B. (2021), "Resilience metric of equipment system: Theory, measurement and sensitivity analysis", Reliab. Eng. Syst. Saf., 215, 107889. https://doi.org/10.1016/j.ress.2021.107889.
  127. Yang, Z.J., Dehghanian, P. and Nazemi, M. (2020), "Seismic-resilient electric power distribution systems: Harnessing the mobility of power sources", IEEE Trans. Indust. Appl., 56(3), 2304-2313. https://doi.org/10.1109/tia.2020.2972854.
  128. Yavari, S., Chang, S.E. and Elwood, K.J. (2010), "Modeling post-earthquake functionality of regional health care facilities", Earthq. Spectra, 26(3), 869-892. https://doi.org/10.1193/1.3460359.
  129. Yu, T., Zhang, C. and Huang, Z. (2023), "Experimental and numerical studies of a novel three-dimensional isolation device incorporating disc springs with U-shaped dampers", Soil Dyn. Earthq. Eng., 174, 108164. https://doi.org/10.1016/j.soildyn.2023.108164.
  130. Zhang, C., Ding, C. and Zhou, Y. (2022a), "Seismic behavior of prefabricated reinforced concrete stair isolated by high damping rubber bearings", Bull. Earthq. Eng., 21(2), 1325-1352. https://doi.org/10.1007/s10518-022-01548-z.
  131. Zhang, C., Ling, B., Huang, W. (2022b), "Cyclic behavior of semi-rigid steel frame infilled with damping wall panels", Journal of Building Engineering, 51, 104238. https://doi.org/10.1016/j.jobe.2022.104238.
  132. Zhang, C., Wu, J. and Huang, W. (2021), "Experimental and numerical study on seismic performance of semi-rigid steel frame infilled with prefabricated damping wall panels", Eng. Struct., 246, 113056. https://doi.org/10.1016/j.engstruct.2021.113056.
  133. Zhang, C., Yu, T. and Chen, Z. (2022c), "Seismic behavior of novel low-damage precast infill walls with sliding joints for reinforced concrete frame", Earthq. Eng. Struct. Dyn., 51(15), 3730-3754. https://doi.org/10.1002/eqe.3746.
  134. Zhang, L.X., Huang, X.G. and Zhou, Z. (2020), "Rocking response of self-centring wall with viscous dampers under pulse-type excitations", Earthq. Struct., 19(3), 215-226. https://doi.org/10.12989/eas.2020.19.3.215.
  135. Zhang, Y., Fung, J.F. and Johnson, K.J. (2022d), "Review of seismic risk mitigation policies in earthquake-prone countries: Lessons for earthquake resilience in the United States", J. Earthq. Eng., 26(12), 6208-6235. https://doi.org/10.1080/13632469.2021.1911889.
  136. Zhao, J., Si, C.Z. and Ren, W.B. (2021), "Experimental and numerical studies on seismic performance of rectangular concrete columns reinforced by CFRP bars with different ratios and positions", Struct., 32, 237-253. https://doi.org/10.1016/j.istruc.2021.03.004.
  137. Zheng, X.W., Li, H.N. and Lv, H.L. (2022), "Bayesian-based seismic resilience assessment for high-rise buildings with the uncertainty in various variables", J. Build. Eng., 51, 104321. https://doi.org/10.1016/j.jobe.2022.104321.
  138. Zheng, Y., Fang, C. and Liang, D. (2021), "An innovative seismic-resilient bridge with shape memory alloy-washer-based footing rocking RC piers", J. Intell. Mater. Syst. Struct., 32(5), 549-567. https://doi.org/10.1177/1045389X20963167.
  139. Zhong, C. and Christopoulos, C. (2022), "Self-centering seismic-resistant structures: Historical overview and state-of-the-art", Earthq. Spectra, 38(2), 1321-1356. https://doi.org/10.1177/87552930211057581.
  140. Zhou, Y., Chen, Z. and Zhong, G. (2023), "Investigation on the seismic performance of the masonry infill wall with damping layer joint", Eng. Struct., 285, 115979. https://doi.org/10.1016/j.engstruct.2023.115979.
  141. Zhou, Y., Ou, Y.C. and Lee, G.C. (2017), "Bond-slip responses of stainless reinforcing bars in grouted ducts", Eng. Struct., 141, 651-665. https://doi.org/10.1016/j.engstruct.2017.03.049.
  142. Zobel, C.W. (2011), "Representing perceived tradeoffs in defining disaster resilience", Decis. Support Syst., 50(2), 394-403. https://doi.org/10.1016/j.dss.2010.10.001.
  143. Zuo, J., Pullen, S. and Rameezdeen, R. (2017), "Green building evaluation from a life-cycle perspective in Australia: A critical review", Renewab. Sustainab. Energy Rev., 70, 358-368. https://doi.org/10.1016/j.rser.2016.11.251.