참고문헌
- Alam, M.S., Bhuiyan, M.A. and Billah, A.H.M. (2012), "Seismic fragility assessment of SMA-bar restrained multi-span continuous highway bridge isolated by different laminated rubber bearings in medium to strong seismic risk zones", Bull Earthq Eng., 10,1885-1909. https://doi.org/10.1007/s10518-012-9381-8.
- Andrawes, B. and DesRoches, R. (2007), "Comparison between shape memory alloy seismic restrainers and other bridge retrofit devices", J. Bridg Eng., 12(6), 700-709. http://doi.org/10.1061/(ASCE)1084-702(2007)12:6(700).
- ASCE (2010), Minimum Design Loads for Buildings and Other Structures, SEI/ASCE Standard No. 7-10, American Society of Civil Engineers, Reston, VA, USA.
- ASTM. (2007), Standard Test Method for Tension Testing of Nickel-Titanium Superelastic Materials, F2516-07, ASTM International, West Conshohocken, PA, USA.
- ATC (1985), "Earthquake damage evaluation data for California", Report No. ATC-13; Applied Technology Council (ATC), Redwood City, CA, USA.
- Attanasi, G. and Auricchio, F. (2011), "Innovative superelastic isolation device", J. Earthq. Eng, 15(1), 72-89. http://doi.org/10.1080/13632469.2011.562406.
- Auricchio, F., Fugazza, D. and DesRoches, R. (2006), "Earthquake performance of steel frames with nitinol braces", J. Earthq. Eng., 10(1), 45-66. https://doi.org/10.1080/13632460609350628
- Bonci, A., Carluccio, G., Castellano, M.G., Croci, G., Infanti, S. and Viskovic, A.A. (2001), "Use of shock transmission units and shape memory alloy devices for the seismic protection of monuments: The case of the upper Basilica of San Francesco at Assisi", Proceedings of the International Millennium Congress, More than Two Thousand Years in the History of Architecture, Paris, France, September.
- Cao, Z., Guo, T., Xu, Z. and Lu, S. (2015), "Theoretical analysis of self-centering concrete piers with external dissipators", Earthq. Struct., 9(6), 1313-1336. https://doi.org/10.12989/eas.2015.9.6.1313.
- Chao, S., Wu, H., Zhou, T., Guo, T. and Wang, C. (2019), "Application of self-centering wall panel with replaceable energy dissipation devices in steel frames", Steel Compos. Struct., 32(2), 265-279. https://doi.org/10.12989/scs.2019.32.2.265.
- Chi, P., Guo, T., Peng, Y., Cao, D. and Dong, J. (2018), "Development of a self-centering tension-only brace for seismic protection of frame structures", Steel Compos. Struct., 26(5), 573-582. https://doi.org/10.12989/scs.2018.26.5.573.
- Chung, Y.L., Du, L.J. and Pan, H.H. (2019), "Performance evaluation of a rocking steel column base equipped with asymmetrical resistance friction damper", Earthq. Struct., 17(1), 49-61. https://doi.org/10.12989/eas.2019.17.1.049.
- Cismasiu, C. and Amarante dos Santos, F.P. (2012), "Towards a semi-active vibration control solution based on superelastic shape memory alloys", WCEE 2012, Lisbon, Portugal, September.
- Deng, Z., Li, Q. and Sun, H. (2006), "Behavior of concrete beam with embedded shape memory alloy wires", Eng. Struct., 28(12), 1691-1697. http://doi.org/10.1016/j.engstruct.2006.03.002.
- DesRoches, R. and Delemont, M. (2002), "Seismic retrofit of simply supported bridges using shape memory alloys", Eng. Struct., 24(3), 325-332. http://doi.org/10.1016/S0141-0296(01)00098-0.
- DesRoches, R. and Smith, B. (2004), "Shape memory alloys in seismic resistant design and retrofit: A critical review of their potential and limitations", J. Earthq. Eng., 08(3), 415-429. http://doi.org/10.1142/S1363246904001298.
- Dolce, M., Cardone, D. and Marnetto, R. (2000), "Implementation and testing of passive control devices based on shape memory alloys", Earthq. Eng. Struct. Dyn., 29(7), 945-968. https://doi.org/10.1002/1096-9845(200007)29:7%3C945::AIDEQE958%3E3.0.CO;2-%23.
- Dolce, M., Cardone, D., Ponzo, F.C. and Valente, C. (2005), "Shaking table tests on reinforced concrete frames without and with passive control systems", Earthq. Eng. Struct. Dyn., 34(14), 1687-1717. http://doi.org/10.1002/eqe.501.
- Dong, H., Han, Q. and Du, X. (2019), "Application of an extended Bouc-Wen model for hysteretic behavior of the RC structure with SCEBs", Struct. Eng. Mech., 71(6), 683-697. https://doi.org/10.12989/sem.2019.71.6.683.
- Dougka, G., Dimakogianni, D. and Vayas, I. (2014), "Seismic behavior of frames with innovative energy dissipation systems (FUSEIS 1-1)", Earthq. Struct., 6(5), 561-580. https://doi.org/10.12989/eas.2014.6.5.561.
- FEMA, P695 (2009), Quantification of Building Seismic Performance Factors, Federal Emergency Management Agency, Washington, D.C., USA.
- Frick, C.P., Ortega, A.M., Tyber. J., Gall, K. and Maier, H. (2004), "Multiscale structure and properties of cast and deformation processed polycrystalline NiTi shape-memory alloys", Metall. Mater. Trans. A, 35(7), 2013-2025. https://doi.org/10.1007/s11661-004-0150-4.
- Haber, Z.B., Saiidi, S.M. and Sanders, D.H. (2014), "Seismic performance of precast columns with mechanically spliced column-footing connections", ACI Struct. J., 111(3), 639-650. https://doi.org/10.14359/51686624
- Hancock, J., Lamprey, J.W., Abrahamson, N.A., Bommer, J.J., Markatis, A., McCoyh, E. and Mendis, R. (2006), "An improved method of matching response spectra of recorded earthquake ground motion using wavelets", J. Earthq. Eng., 10(1), 67-89. https://doi.org/10.1080/13632460609350629
- He, X. and Lu. Z. (2019), "Seismic fragility assessment of a super tall building with hybrid control strategy using IDA method", Soil Dyn. Earthq. Eng., 123, 278-291. https://doi.org/10.1016/j.soildyn.2019.05.003.
- Henry, R.S., Sritharan, S. and Ingham, J.M. (2016), "Residual drift analyses of realistic self-centering concrete wall systems", Earthq. Struct., 10(2), 409-428. https://doi.org/10.12989/eas.2016.10.2.409.
- Hoveidae, N. (2019), "Multi-material core as self-centering mechanism for buildings incorporating BRBs", Earthq. Struct., 16(5), 589-599. https://doi.org/10.12989/eas.2019.16.5.589.
- Hu, X. and Zhang, Y. (2013), "Ductility demand of partially self-centering structures under seismic loading: SDOF systems", Earthq. Struct., 4(4), 365-381. https://doi.org/10.12989/eas.2013.4.4.365.
- Huang, X., Zhou, Z. and Zhu, D. (2019), "Analytical investigation on lateral load responses of self-centering walls with distributed vertical dampers", Struct. Eng. Mech., 72(3), 355-366. https://doi.org/10.12989/sem.2019.72.3.355.
- Jung, M.J. and Yoon, S.K. (2017), "Structural performance on the self-centering connections with different conditions of PT strands", KSCE J., 29(1), 73-80. https://doi.org/10.7781/kjoss.2017.29.1.073.
- Karim, K.R. and Yamazaki, F. (2007), "Effect of isolation on fragility curves of highway bridges based on simplified approach", Soil Dyn. Earthq. Eng., 27, 414-426. https://doi.org/10.1016/j.soildyn.2006.10.006.
- Kharrazi, H. and Zahrai, S.M. (2020), "Seismic evaluation of self-centering energy dissipating braces using fragility curves", Steel Compos. Struct., 37(6), 679-693. https://doi.org/10.12989/scs.2020.37.6.679.
- Kim, J.K., Christopoulos, C. and Choi, H.H. (2008), "Inelastic seismic response of asymmetric-plan self-centering energy dissipative braced frames", J. Earthq. Eng. Soc. Korea, 12(4), 35-44. https://doi.org/10.5000/EESK.2008.12.4.035.
- Kitayama, S. and Constantinou, M.C. (2016), "Probabilistic collapse resistance and residual drift assessment of buildings with fluidic self-centering systems", Earthq. Eng. Struct. Dyn., 45(12), 1935-1953. https://doi.org/10.1002/eqe.2733.
- Li, L.X., Li, H.N. and Li, C. (2018), "Seismic fragility assessment of self-centering RC frame structures considering maximum and residual deformations", Struct. Eng. Mech., 68(6), 677-689. https://doi.org/10.12989/sem.2018.68.6.677.
- Liu, J.L., Xu, L.H. and Li, Z.X. (2020), "Experimental study on component performance in steel plate shear wall with self-centering braces", Steel Compos. Struct., 37(3), 341-351. https://doi.org/10.12989/scs.2020.37.3.341.
- Lopez-Barraza, A., Ruiz, S.E., Reyes-Salazar, A. and Bojorquez, E. (2016), "Demands and distribution of hysteretic energy in moment resistant self-centering steel frames", Steel Compos. Struct., 20(5), 1155-1171. https://doi.org/10.12989/scs.2016.20.5.1155.
- Maji, A. and Negret, I. (1998), "Smart prestressing with shape-memory alloy", J. Eng. Mech., 124(10), 1121-1128. http://doi.org/10.1061/(ASCE)0733-9399(1998)124:10(1121).
- Mander, J.B., Priestley, M.J.N. and Park, R. (1988), "Theoretical stressstrain model for confined concrete", J. Struct. Eng., 8(1804), 1804-1826. http://doi.org/10.1061/(ASCE)0733-445(1988)114:8(1804).
- McCormick, J., DesRoches, R., Fugazza, D. and Auricchio, F. (2006), "Seismic vibration control using superelastic shape memory alloys", J. Eng. Mater. Technol., 128(3), 294-301. http://doi.org/10.1115/1.2203109.
- McCormick, J.P. (2006), "Cyclic behavior of shape memory alloys materials characterization and optimization", Ph.D. thesis, Georgia Institute of Technology, Atlanta, GA, USA.
- McGuire, R.K. (2011), "FRISK: A computer program for seismic risk analysis using faults as earthquake sources", No. 78-1007; US Geological Survey, Reston, VA, USA.
- Moradi, S., Alam, M.S. and Asgarian, B. (2014), "Incremental dynamic analysis of steel frames equipped with NiTi shape memory alloy braces", Struct. Des. Tall Spec. Build., 23(18), 1406-1425. https://doi.org/10.1002/tal.1149.
- Naeem, A. and Kim, J. (2018), "Seismic retrofit of a framed structure using damped cable systems", Steel Compos. Struct., 29(3), 287-299. https://doi.org/10.12989/scs.2018.29.3.287.
- OpenSees 2.4.1 (2014), Computer Software, Pacific Earthquake Engineering Research Center, Berkeley, CA, USA.
- Ozbulut, O.E., Hurlebaus, S. and Desroches, R. (2011), "Seismic response control using shape memory alloys: A review", J. Intell. Mater. Syst. Struct., 22(14), 1531-1549. https://doi.org/10.1177/1045389X11411220.
- Pang, Y., Sun, Y. and Zhong, J. (2021), "Resilience-based performance and design of SMA/sliding bearing isolation system for highway bridges", Bull. Earthq. Eng., 19, 6187-6211. https://doi.org/10.1007/s10518-021-01220-y.
- Qiu, C. and Du, X. (2021), "Performance-based seismic design of multi-story CBFs equipped with SMA-friction damping braces", Bull. Earthq. Eng., 19, 2711-2737. https://doi.org/10.1007/s10518-021-01060-w.
- Rahgozar, N., Moghadam, A.S. and Aziminejad, A. (2017), "Response of self-centering braced frame to near-field pulse-like ground motions", Struct. Eng. Mech., 62(4), 497-506. https://doi.org/10.12989/sem.2017.62.4.497.
- Ramirez, O.M., Constantinou, M.C., Gomez, J.D., Whittaker, A.S. and Chrysostomou, C.Z. (2002), "Evaluation of simplified methods of analysis of yielding structures with damping systems", Earthq. Spectra, 18(3), 501-530. https://doi.org/10.1193/1.1509763.
- Reyes-Salazar, A., Ruiz, S.E., Bojorquez, E., Bojorquez, J. and Llanes-Tizoc, M.D. (2016), "Seismic response of complex 3D steel buildings with welded and post-tensioned connections", Earthq. Struct., 11(2), 217-243. https://doi.org/10.12989/eas.2016.11.2.217.
- SAES Company (2012), Shape Memory Alloys/Nitinol; SAES Company, Milan, Italy. http://www.saesgetters.com/product-groups/shape-memory-alloys
- SAES Company (2013), Shape Memory Alloys/Nitinol; SAES Company, Milan, Italy. http://www.saesgetters.com/product-groups/shape-memory-alloys
- Saiidi, M.S. and Wang, H. (2006), "Exploratory study of seismic response of concrete columns with shape memory alloys reinforcement", ACI Struct. J., 103(3), 436-443. https://doi.org/10.14359/15322.
- Saiidi, M.S., O'Brien, M. and Sadrossadat-Zadeh, M. (2009), "Cyclic response of concrete bridge columns using superelastic nitinol and bendable concrete", ACI Struct. J., 106(1), 69-77. https://doi.org/10.14359/56285.
- Sepulveda, J., Boroschek, R., Herrera, R., Moroni, O. and Sarrazin, M. (2008), "Steel beam-column connection using copper-based shape memory alloy dampers", J. Constr. Steel Res., 64(4), 429-435. https://doi.org/10.1016/j.jcsr.2007.09.002.
- Shi, F., Saygili, G. and Ozbulut, O.E. (2018), "Probabilistic seismic performance evaluation of SMA braced steel frames considering SMA brace failure", Bull. Earthq. Eng., 16, 5937-5962. https://doi.org/10.1007/s10518-018-0415-8.
- Shinozuka, M., Feng, M.Q., Lee, J. and Naganuma, T. (2000), "Statistical analysis of fragility curves", J. Eng. Mech. ASCE, 126, 1224-1231. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:12(1224).
- Silva, E.D. (2007), "Beam shape feedback control by means of a shape memory actuator", Mater. Des., 28(5), 1592-1596. http://doi.org/10.1016/j.matdes.2006.02.021.
- Song, L.L. and Guo, T. (2017), "Probabilistic seismic performance assessment of self-centering prestressed concrete frames with web friction devices", Earthq. Struct., 12(1), 109-118. https://doi.org/10.12989/eas.2017.12.1.109.
- Song, L.L., Guo, T. and Shi, X. (2019), "Probabilistic seismic demand assessment of self-centering concrete frames under mainshock-aftershock excitations", Steel Compos. Struct., 33(5), 641-652. https://doi.org/10.12989/scs.2019.33.5.641.
- Speicher, M., Hodgson, D.E., DesRoches, R. and Leon, R.T. (2009), "Shape memory alloy tension/ compression device for seismic retrofit of buildings", J. Mater. Eng. Perform., 18(5-6), 746-53. http://doi.org/10.1007/s11665-009-9433-7.
- Sultana, P. and Youssef, M.A. (2018), "Seismic performance of modular steel-braced frames utilizing superelastic shape memory alloy bolts in the vertical module connections", J. Earthq. Eng., 24(2), 628-652. https://doi.org/10.1080/13632469.2018.1453394.
- Tian, L. and Qiu, C. (2018), "Modal pushover analysis of self-centering concentrically braced frames", Struct. Eng. Mech., 65(3), 251-261. https://doi.org/10.12989/sem.2018.65.3.251.
- Twigden, K.M. and Henry, R.S. (2019), "Snap back testing of unbonded post-tensioned concrete wall systems", Earthq. Struct., 16(2), 209-219. https://doi.org/10.12989/eas.2019.16.2.209.
- Wang, W., Fang, C., Yang, X., Chen, Y., Ricles, J. and Sause, R. (2011), "Innovative use of a shape memory alloys: A review", J. Intell. Mater. Syst. Struct., 22(14), 1531-1549. https://doi.org/10.1177/1045389X11411220
- Wang, W., Fang, C., Yang, X., Chen, Y., Ricles, J. and Sause, R. (2017), "Innovative use of a shape memory alloy ring spring system for self-centering connections", Eng. Struct., 153, 503-315. https://doi.org/10.1016/j.engstruct.2017.10.039.
- Wilde, K., Gardoni, P. and Fujino, Y. (2000), "Base isolation system with shape memory alloy device for elevated highway bridges", Eng. Struct., 22(3), 222-229. http://doi.org/10.1016/S0141-0296(98)00097-2.
- Xie, X.S., Xu, L.H. and Li, Z.X. (2019), "Mechanics of a variable damping self-centering brace: Seismic performance and failure modes", Steel Compos. Struct., 31(2), 149-158. https://doi.org/10.12989/scs.2019.31.2.149.
- Xu, L., Fan, X., Lu, D. and Li, Z. (2016), "Hysteretic behavior studies of self-centering energy dissipation bracing system", Steel Compos. Struct., 20(6), 1205-1219. https://doi.org/10.12989/scs.2016.20.6.1205.
- Xu, L., Xie, X., Yan, X. and Li, Z. (2019), "Seismic behavior enhancement of frame structure considering parameter sensitivity of self-centering braces", Struct. Eng. Mech., 71(1), 45-56. https://doi.org/10.12989/sem.2019.71.1.045.
- Xu, L.H., Xiao, S.J. and Lu, X. (2018), "Seismic response analysis of RC frame core-tube building with self-centering braces", Struct. Monit. Maint., 5(2), 189-204. https://doi.org/10.12989/smm.2018.5.2.189.
- Youssef, M.A., Alam, M.S. and Nehdi, M. (2008), "Experimental investigation on the seismic behavior of beam-column joints reinforced with superelastic shape memory alloys", J. Earthq. Eng., 12(7), 1205-1222. https://doi.org/10.1080/13632460802003082.
- Zhang, L., Huang, X. and Zhou, Z. (2020), "Rocking response of self-centring wall with viscous dampers under pulse-type excitations", Earthq. Struct., 19(3), 215-226. https://doi.org/10.12989/eas.2020.19.3.215.
- Zheng, Y. and Dong, Y. (2019), "Performance-based assessment of bridges with steel-SMA reinforced piers in a life-cycle context by numerical approach", Bull. Earthq. Eng., 17, 1667-1688. https://doi.org/10.1007/s10518-018-0510-x.
- Zheng, Y., Dong, Y., Chen, B. and Anwar, G.A. (2019), "Seismic damage mitigation of bridges with self-adaptive SMA-cable-based bearings", Smart Struct. Syst., 24(1), 127-139. https://doi.org/10.12989/sss.2019.24.1.127.
- Zhou, Z., He, X.T., Wu, J., Wang, C.L. and Meng, S.P. (2014), "Development of a novel self-centering buckling-restrained brace with BFRP composite tendons", Steel Compos. Struct., 16(5), 491-506. https://doi.org/10.12989/scs.2014.16.5.491.
- Zhu, S. and Zhang, Y. (2013), "Loading rate effect on superelastic SMA-based seismic response modification devices", Earthq. Struct., 4(6), 607-627. https://doi.org/10.12989/eas.2013.4.6.607.