DOI QR코드

DOI QR Code

Seismic fragility assessment of steel moment-resisting frames equipped with superelastic viscous dampers

  • Abbas Ghasemi (Department of Civil Engineering, Faculty of Civil and Earth Resources Engineering, Central Tehran Branch, Islamic Azad University) ;
  • Fatemeh Arkavazi (Department of Civil Engineering, Faculty of Civil and Earth Resources Engineering, Central Tehran Branch, Islamic Azad University) ;
  • Hamzeh Shakib (Department of Civil Engineering, Faculty of Civil and Environmental Engineering, Tarbiat Modares University)
  • Received : 2023.01.21
  • Accepted : 2023.10.04
  • Published : 2023.11.25

Abstract

The superelastic viscous damper (SVD) is a hybrid passive control device comprising a viscoelastic damper and shape memory alloy (SMA) cables connected in series. The SVD is an innovative damper through which a large amount of seismic energy can dissipate. The current study assessed the seismic collapse induced by steel moment-resisting frames (SMRFs) equipped with SVDs and compared them with the performance of special MRFs and buckling restrained brace frames (BRBFs). For this purpose, nonlinear dynamic and incremental dynamic analysis (IDA) were conducted in OpenSees software. Both 5- and 9-story special MRFs, BRBFs, and MRFs equipped with the SVDs were examined. The results indicated that the annual exceedance rate for maximum residual drifts of 0.2% and 0.5% for the BRBFs and MRFs with SVDs, respectively, were considerably less than for SMRFs with reduced-beam section (RBS) connections and that the seismic performances of these structures were enhanced with the use of the BRB and SVD. The probability of collapse due to residual drift in the SVD, BRB, and RBS frames in the 9-story structure was 1.45, 1.75, and 1.05 times greater than for the 5-story frame.

Keywords

References

  1. Alam, M.S., Bhuiyan, M.A. and Billah, A.H.M. (2012), "Seismic fragility assessment of SMA-bar restrained multi-span continuous highway bridge isolated by different laminated rubber bearings in medium to strong seismic risk zones", Bull Earthq Eng., 10,1885-1909. https://doi.org/10.1007/s10518-012-9381-8.
  2. Andrawes, B. and DesRoches, R. (2007), "Comparison between shape memory alloy seismic restrainers and other bridge retrofit devices", J. Bridg Eng., 12(6), 700-709. http://doi.org/10.1061/(ASCE)1084-702(2007)12:6(700).
  3. ASCE (2010), Minimum Design Loads for Buildings and Other Structures, SEI/ASCE Standard No. 7-10, American Society of Civil Engineers, Reston, VA, USA.
  4. ASTM. (2007), Standard Test Method for Tension Testing of Nickel-Titanium Superelastic Materials, F2516-07, ASTM International, West Conshohocken, PA, USA.
  5. ATC (1985), "Earthquake damage evaluation data for California", Report No. ATC-13; Applied Technology Council (ATC), Redwood City, CA, USA.
  6. Attanasi, G. and Auricchio, F. (2011), "Innovative superelastic isolation device", J. Earthq. Eng, 15(1), 72-89. http://doi.org/10.1080/13632469.2011.562406.
  7. Auricchio, F., Fugazza, D. and DesRoches, R. (2006), "Earthquake performance of steel frames with nitinol braces", J. Earthq. Eng., 10(1), 45-66. https://doi.org/10.1080/13632460609350628
  8. Bonci, A., Carluccio, G., Castellano, M.G., Croci, G., Infanti, S. and Viskovic, A.A. (2001), "Use of shock transmission units and shape memory alloy devices for the seismic protection of monuments: The case of the upper Basilica of San Francesco at Assisi", Proceedings of the International Millennium Congress, More than Two Thousand Years in the History of Architecture, Paris, France, September.
  9. Cao, Z., Guo, T., Xu, Z. and Lu, S. (2015), "Theoretical analysis of self-centering concrete piers with external dissipators", Earthq. Struct., 9(6), 1313-1336. https://doi.org/10.12989/eas.2015.9.6.1313.
  10. Chao, S., Wu, H., Zhou, T., Guo, T. and Wang, C. (2019), "Application of self-centering wall panel with replaceable energy dissipation devices in steel frames", Steel Compos. Struct., 32(2), 265-279. https://doi.org/10.12989/scs.2019.32.2.265.
  11. Chi, P., Guo, T., Peng, Y., Cao, D. and Dong, J. (2018), "Development of a self-centering tension-only brace for seismic protection of frame structures", Steel Compos. Struct., 26(5), 573-582. https://doi.org/10.12989/scs.2018.26.5.573.
  12. Chung, Y.L., Du, L.J. and Pan, H.H. (2019), "Performance evaluation of a rocking steel column base equipped with asymmetrical resistance friction damper", Earthq. Struct., 17(1), 49-61. https://doi.org/10.12989/eas.2019.17.1.049.
  13. Cismasiu, C. and Amarante dos Santos, F.P. (2012), "Towards a semi-active vibration control solution based on superelastic shape memory alloys", WCEE 2012, Lisbon, Portugal, September.
  14. Deng, Z., Li, Q. and Sun, H. (2006), "Behavior of concrete beam with embedded shape memory alloy wires", Eng. Struct., 28(12), 1691-1697. http://doi.org/10.1016/j.engstruct.2006.03.002.
  15. DesRoches, R. and Delemont, M. (2002), "Seismic retrofit of simply supported bridges using shape memory alloys", Eng. Struct., 24(3), 325-332. http://doi.org/10.1016/S0141-0296(01)00098-0.
  16. DesRoches, R. and Smith, B. (2004), "Shape memory alloys in seismic resistant design and retrofit: A critical review of their potential and limitations", J. Earthq. Eng., 08(3), 415-429. http://doi.org/10.1142/S1363246904001298.
  17. Dolce, M., Cardone, D. and Marnetto, R. (2000), "Implementation and testing of passive control devices based on shape memory alloys", Earthq. Eng. Struct. Dyn., 29(7), 945-968. https://doi.org/10.1002/1096-9845(200007)29:7%3C945::AIDEQE958%3E3.0.CO;2-%23.
  18. Dolce, M., Cardone, D., Ponzo, F.C. and Valente, C. (2005), "Shaking table tests on reinforced concrete frames without and with passive control systems", Earthq. Eng. Struct. Dyn., 34(14), 1687-1717. http://doi.org/10.1002/eqe.501.
  19. Dong, H., Han, Q. and Du, X. (2019), "Application of an extended Bouc-Wen model for hysteretic behavior of the RC structure with SCEBs", Struct. Eng. Mech., 71(6), 683-697. https://doi.org/10.12989/sem.2019.71.6.683.
  20. Dougka, G., Dimakogianni, D. and Vayas, I. (2014), "Seismic behavior of frames with innovative energy dissipation systems (FUSEIS 1-1)", Earthq. Struct., 6(5), 561-580. https://doi.org/10.12989/eas.2014.6.5.561.
  21. FEMA, P695 (2009), Quantification of Building Seismic Performance Factors, Federal Emergency Management Agency, Washington, D.C., USA.
  22. Frick, C.P., Ortega, A.M., Tyber. J., Gall, K. and Maier, H. (2004), "Multiscale structure and properties of cast and deformation processed polycrystalline NiTi shape-memory alloys", Metall. Mater. Trans. A, 35(7), 2013-2025. https://doi.org/10.1007/s11661-004-0150-4.
  23. Haber, Z.B., Saiidi, S.M. and Sanders, D.H. (2014), "Seismic performance of precast columns with mechanically spliced column-footing connections", ACI Struct. J., 111(3), 639-650. https://doi.org/10.14359/51686624
  24. Hancock, J., Lamprey, J.W., Abrahamson, N.A., Bommer, J.J., Markatis, A., McCoyh, E. and Mendis, R. (2006), "An improved method of matching response spectra of recorded earthquake ground motion using wavelets", J. Earthq. Eng., 10(1), 67-89. https://doi.org/10.1080/13632460609350629
  25. He, X. and Lu. Z. (2019), "Seismic fragility assessment of a super tall building with hybrid control strategy using IDA method", Soil Dyn. Earthq. Eng., 123, 278-291. https://doi.org/10.1016/j.soildyn.2019.05.003.
  26. Henry, R.S., Sritharan, S. and Ingham, J.M. (2016), "Residual drift analyses of realistic self-centering concrete wall systems", Earthq. Struct., 10(2), 409-428. https://doi.org/10.12989/eas.2016.10.2.409.
  27. Hoveidae, N. (2019), "Multi-material core as self-centering mechanism for buildings incorporating BRBs", Earthq. Struct., 16(5), 589-599. https://doi.org/10.12989/eas.2019.16.5.589.
  28. Hu, X. and Zhang, Y. (2013), "Ductility demand of partially self-centering structures under seismic loading: SDOF systems", Earthq. Struct., 4(4), 365-381. https://doi.org/10.12989/eas.2013.4.4.365.
  29. Huang, X., Zhou, Z. and Zhu, D. (2019), "Analytical investigation on lateral load responses of self-centering walls with distributed vertical dampers", Struct. Eng. Mech., 72(3), 355-366. https://doi.org/10.12989/sem.2019.72.3.355.
  30. Jung, M.J. and Yoon, S.K. (2017), "Structural performance on the self-centering connections with different conditions of PT strands", KSCE J., 29(1), 73-80. https://doi.org/10.7781/kjoss.2017.29.1.073.
  31. Karim, K.R. and Yamazaki, F. (2007), "Effect of isolation on fragility curves of highway bridges based on simplified approach", Soil Dyn. Earthq. Eng., 27, 414-426. https://doi.org/10.1016/j.soildyn.2006.10.006.
  32. Kharrazi, H. and Zahrai, S.M. (2020), "Seismic evaluation of self-centering energy dissipating braces using fragility curves", Steel Compos. Struct., 37(6), 679-693. https://doi.org/10.12989/scs.2020.37.6.679.
  33. Kim, J.K., Christopoulos, C. and Choi, H.H. (2008), "Inelastic seismic response of asymmetric-plan self-centering energy dissipative braced frames", J. Earthq. Eng. Soc. Korea, 12(4), 35-44. https://doi.org/10.5000/EESK.2008.12.4.035.
  34. Kitayama, S. and Constantinou, M.C. (2016), "Probabilistic collapse resistance and residual drift assessment of buildings with fluidic self-centering systems", Earthq. Eng. Struct. Dyn., 45(12), 1935-1953. https://doi.org/10.1002/eqe.2733.
  35. Li, L.X., Li, H.N. and Li, C. (2018), "Seismic fragility assessment of self-centering RC frame structures considering maximum and residual deformations", Struct. Eng. Mech., 68(6), 677-689. https://doi.org/10.12989/sem.2018.68.6.677.
  36. Liu, J.L., Xu, L.H. and Li, Z.X. (2020), "Experimental study on component performance in steel plate shear wall with self-centering braces", Steel Compos. Struct., 37(3), 341-351. https://doi.org/10.12989/scs.2020.37.3.341.
  37. Lopez-Barraza, A., Ruiz, S.E., Reyes-Salazar, A. and Bojorquez, E. (2016), "Demands and distribution of hysteretic energy in moment resistant self-centering steel frames", Steel Compos. Struct., 20(5), 1155-1171. https://doi.org/10.12989/scs.2016.20.5.1155.
  38. Maji, A. and Negret, I. (1998), "Smart prestressing with shape-memory alloy", J. Eng. Mech., 124(10), 1121-1128. http://doi.org/10.1061/(ASCE)0733-9399(1998)124:10(1121).
  39. Mander, J.B., Priestley, M.J.N. and Park, R. (1988), "Theoretical stressstrain model for confined concrete", J. Struct. Eng., 8(1804), 1804-1826. http://doi.org/10.1061/(ASCE)0733-445(1988)114:8(1804).
  40. McCormick, J., DesRoches, R., Fugazza, D. and Auricchio, F. (2006), "Seismic vibration control using superelastic shape memory alloys", J. Eng. Mater. Technol., 128(3), 294-301. http://doi.org/10.1115/1.2203109.
  41. McCormick, J.P. (2006), "Cyclic behavior of shape memory alloys materials characterization and optimization", Ph.D. thesis, Georgia Institute of Technology, Atlanta, GA, USA.
  42. McGuire, R.K. (2011), "FRISK: A computer program for seismic risk analysis using faults as earthquake sources", No. 78-1007; US Geological Survey, Reston, VA, USA.
  43. Moradi, S., Alam, M.S. and Asgarian, B. (2014), "Incremental dynamic analysis of steel frames equipped with NiTi shape memory alloy braces", Struct. Des. Tall Spec. Build., 23(18), 1406-1425. https://doi.org/10.1002/tal.1149.
  44. Naeem, A. and Kim, J. (2018), "Seismic retrofit of a framed structure using damped cable systems", Steel Compos. Struct., 29(3), 287-299. https://doi.org/10.12989/scs.2018.29.3.287.
  45. OpenSees 2.4.1 (2014), Computer Software, Pacific Earthquake Engineering Research Center, Berkeley, CA, USA.
  46. Ozbulut, O.E., Hurlebaus, S. and Desroches, R. (2011), "Seismic response control using shape memory alloys: A review", J. Intell. Mater. Syst. Struct., 22(14), 1531-1549. https://doi.org/10.1177/1045389X11411220.
  47. Pang, Y., Sun, Y. and Zhong, J. (2021), "Resilience-based performance and design of SMA/sliding bearing isolation system for highway bridges", Bull. Earthq. Eng., 19, 6187-6211. https://doi.org/10.1007/s10518-021-01220-y.
  48. Qiu, C. and Du, X. (2021), "Performance-based seismic design of multi-story CBFs equipped with SMA-friction damping braces", Bull. Earthq. Eng., 19, 2711-2737. https://doi.org/10.1007/s10518-021-01060-w.
  49. Rahgozar, N., Moghadam, A.S. and Aziminejad, A. (2017), "Response of self-centering braced frame to near-field pulse-like ground motions", Struct. Eng. Mech., 62(4), 497-506. https://doi.org/10.12989/sem.2017.62.4.497.
  50. Ramirez, O.M., Constantinou, M.C., Gomez, J.D., Whittaker, A.S. and Chrysostomou, C.Z. (2002), "Evaluation of simplified methods of analysis of yielding structures with damping systems", Earthq. Spectra, 18(3), 501-530. https://doi.org/10.1193/1.1509763.
  51. Reyes-Salazar, A., Ruiz, S.E., Bojorquez, E., Bojorquez, J. and Llanes-Tizoc, M.D. (2016), "Seismic response of complex 3D steel buildings with welded and post-tensioned connections", Earthq. Struct., 11(2), 217-243. https://doi.org/10.12989/eas.2016.11.2.217.
  52. SAES Company (2012), Shape Memory Alloys/Nitinol; SAES Company, Milan, Italy. http://www.saesgetters.com/product-groups/shape-memory-alloys
  53. SAES Company (2013), Shape Memory Alloys/Nitinol; SAES Company, Milan, Italy. http://www.saesgetters.com/product-groups/shape-memory-alloys
  54. Saiidi, M.S. and Wang, H. (2006), "Exploratory study of seismic response of concrete columns with shape memory alloys reinforcement", ACI Struct. J., 103(3), 436-443. https://doi.org/10.14359/15322.
  55. Saiidi, M.S., O'Brien, M. and Sadrossadat-Zadeh, M. (2009), "Cyclic response of concrete bridge columns using superelastic nitinol and bendable concrete", ACI Struct. J., 106(1), 69-77. https://doi.org/10.14359/56285.
  56. Sepulveda, J., Boroschek, R., Herrera, R., Moroni, O. and Sarrazin, M. (2008), "Steel beam-column connection using copper-based shape memory alloy dampers", J. Constr. Steel Res., 64(4), 429-435. https://doi.org/10.1016/j.jcsr.2007.09.002.
  57. Shi, F., Saygili, G. and Ozbulut, O.E. (2018), "Probabilistic seismic performance evaluation of SMA braced steel frames considering SMA brace failure", Bull. Earthq. Eng., 16, 5937-5962. https://doi.org/10.1007/s10518-018-0415-8.
  58. Shinozuka, M., Feng, M.Q., Lee, J. and Naganuma, T. (2000), "Statistical analysis of fragility curves", J. Eng. Mech. ASCE, 126, 1224-1231. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:12(1224).
  59. Silva, E.D. (2007), "Beam shape feedback control by means of a shape memory actuator", Mater. Des., 28(5), 1592-1596. http://doi.org/10.1016/j.matdes.2006.02.021.
  60. Song, L.L. and Guo, T. (2017), "Probabilistic seismic performance assessment of self-centering prestressed concrete frames with web friction devices", Earthq. Struct., 12(1), 109-118. https://doi.org/10.12989/eas.2017.12.1.109.
  61. Song, L.L., Guo, T. and Shi, X. (2019), "Probabilistic seismic demand assessment of self-centering concrete frames under mainshock-aftershock excitations", Steel Compos. Struct., 33(5), 641-652. https://doi.org/10.12989/scs.2019.33.5.641.
  62. Speicher, M., Hodgson, D.E., DesRoches, R. and Leon, R.T. (2009), "Shape memory alloy tension/ compression device for seismic retrofit of buildings", J. Mater. Eng. Perform., 18(5-6), 746-53. http://doi.org/10.1007/s11665-009-9433-7.
  63. Sultana, P. and Youssef, M.A. (2018), "Seismic performance of modular steel-braced frames utilizing superelastic shape memory alloy bolts in the vertical module connections", J. Earthq. Eng., 24(2), 628-652. https://doi.org/10.1080/13632469.2018.1453394.
  64. Tian, L. and Qiu, C. (2018), "Modal pushover analysis of self-centering concentrically braced frames", Struct. Eng. Mech., 65(3), 251-261. https://doi.org/10.12989/sem.2018.65.3.251.
  65. Twigden, K.M. and Henry, R.S. (2019), "Snap back testing of unbonded post-tensioned concrete wall systems", Earthq. Struct., 16(2), 209-219. https://doi.org/10.12989/eas.2019.16.2.209.
  66. Wang, W., Fang, C., Yang, X., Chen, Y., Ricles, J. and Sause, R. (2011), "Innovative use of a shape memory alloys: A review", J. Intell. Mater. Syst. Struct., 22(14), 1531-1549. https://doi.org/10.1177/1045389X11411220
  67. Wang, W., Fang, C., Yang, X., Chen, Y., Ricles, J. and Sause, R. (2017), "Innovative use of a shape memory alloy ring spring system for self-centering connections", Eng. Struct., 153, 503-315. https://doi.org/10.1016/j.engstruct.2017.10.039.
  68. Wilde, K., Gardoni, P. and Fujino, Y. (2000), "Base isolation system with shape memory alloy device for elevated highway bridges", Eng. Struct., 22(3), 222-229. http://doi.org/10.1016/S0141-0296(98)00097-2.
  69. Xie, X.S., Xu, L.H. and Li, Z.X. (2019), "Mechanics of a variable damping self-centering brace: Seismic performance and failure modes", Steel Compos. Struct., 31(2), 149-158. https://doi.org/10.12989/scs.2019.31.2.149.
  70. Xu, L., Fan, X., Lu, D. and Li, Z. (2016), "Hysteretic behavior studies of self-centering energy dissipation bracing system", Steel Compos. Struct., 20(6), 1205-1219. https://doi.org/10.12989/scs.2016.20.6.1205.
  71. Xu, L., Xie, X., Yan, X. and Li, Z. (2019), "Seismic behavior enhancement of frame structure considering parameter sensitivity of self-centering braces", Struct. Eng. Mech., 71(1), 45-56. https://doi.org/10.12989/sem.2019.71.1.045.
  72. Xu, L.H., Xiao, S.J. and Lu, X. (2018), "Seismic response analysis of RC frame core-tube building with self-centering braces", Struct. Monit. Maint., 5(2), 189-204. https://doi.org/10.12989/smm.2018.5.2.189.
  73. Youssef, M.A., Alam, M.S. and Nehdi, M. (2008), "Experimental investigation on the seismic behavior of beam-column joints reinforced with superelastic shape memory alloys", J. Earthq. Eng., 12(7), 1205-1222. https://doi.org/10.1080/13632460802003082.
  74. Zhang, L., Huang, X. and Zhou, Z. (2020), "Rocking response of self-centring wall with viscous dampers under pulse-type excitations", Earthq. Struct., 19(3), 215-226. https://doi.org/10.12989/eas.2020.19.3.215.
  75. Zheng, Y. and Dong, Y. (2019), "Performance-based assessment of bridges with steel-SMA reinforced piers in a life-cycle context by numerical approach", Bull. Earthq. Eng., 17, 1667-1688. https://doi.org/10.1007/s10518-018-0510-x.
  76. Zheng, Y., Dong, Y., Chen, B. and Anwar, G.A. (2019), "Seismic damage mitigation of bridges with self-adaptive SMA-cable-based bearings", Smart Struct. Syst., 24(1), 127-139. https://doi.org/10.12989/sss.2019.24.1.127.
  77. Zhou, Z., He, X.T., Wu, J., Wang, C.L. and Meng, S.P. (2014), "Development of a novel self-centering buckling-restrained brace with BFRP composite tendons", Steel Compos. Struct., 16(5), 491-506. https://doi.org/10.12989/scs.2014.16.5.491.
  78. Zhu, S. and Zhang, Y. (2013), "Loading rate effect on superelastic SMA-based seismic response modification devices", Earthq. Struct., 4(6), 607-627. https://doi.org/10.12989/eas.2013.4.6.607.