DOI QR코드

DOI QR Code

LSTM을 이용한 협동 로봇 동작별 전류 및 진동 데이터 잔차 패턴 기반 기어 결함진단

Gear Fault Diagnosis Based on Residual Patterns of Current and Vibration Data by Collaborative Robot's Motions Using LSTM

  • 백지훈 (LIG넥스원 드론개발단) ;
  • 유동연 (아주대학교 AI융합네트워크학과 전자공학전공) ;
  • 이정원 (아주대학교 전자공학과/AI융합네트워크학과)
  • 투고 : 2022.12.14
  • 심사 : 2023.07.12
  • 발행 : 2023.10.31

초록

최근에는 협동 로봇의 데이터를 활용한 다양한 결함진단 연구가 수행되고 있다. 협동 로봇의 결함진단을 수행하는 기존 연구들은 기존 연구의 학습 데이터는 미리 정의된 기기의 동작을 가정하고 수집한 정적 데이터를 사용한다. 따라서 결함진단 모델은 학습한 데이터 패턴에 대한 의존성이 높아지는 한계가 있다. 또한 단일 모터를 사용한 실험으로 다관절이 동작하는 협동 로봇의 특성을 반영한 진단이 이루어지지 못했다는 한계가 있다. 본 논문에서는 앞서 언급한 두 가지 한계점을 해결할 수 있는 LSTM 진단 모델을 제안한다. 제안하는 방법은 단일 축 및 다중 축 작업 환경에서의 진동 및 전류 데이터의 상관분석을 사용하여 정상 대표 패턴을 선정하고, 정상 대표 패턴과의 차이를 통해 잔차 패턴을 생성한다. 생성된 잔차 패턴을 입력으로 축별 기어 마모 진단을 수행할 수 있는 LSTM 모델을 생성한다. 해당 결함진단 모델은 동작별 대표 패턴을 통해 모델의 학습 데이터 패턴에 대한 의존성을 낮출 수 있을 뿐 아니라 다중 축 동작 수행 시 발생하는 결함을 진단할 수 있다. 마지막으로, 내부 및 외부 데이터의 특성을 모두 반영하여 결함진단 성능을 개선한 결과 98.57%의 높은 진단 성능을 보였다.

Recently, various fault diagnosis studies are being conducted utilizing data from collaborative robots. Existing studies performing fault diagnosis on collaborative robots use static data collected based on the assumed operation of predefined devices. Therefore, the fault diagnosis model has a limitation of increasing dependency on the learned data patterns. Additionally, there is a limitation in that a diagnosis reflecting the characteristics of collaborative robots operating with multiple joints could not be conducted due to experiments using a single motor. This paper proposes an LSTM diagnostic model that can overcome these two limitations. The proposed method selects representative normal patterns using the correlation analysis of vibration and current data in single-axis and multi-axis work environments, and generates residual patterns through differences from the normal representative patterns. An LSTM model that can perform gear wear diagnosis for each axis is created using the generated residual patterns as inputs. This fault diagnosis model can not only reduce the dependence on the model's learning data patterns through representative patterns for each operation, but also diagnose faults occurring during multi-axis operation. Finally, reflecting both internal and external data characteristics, the fault diagnosis performance was improved, showing a high diagnostic performance of 98.57%.

키워드

과제정보

이 논문은 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2023R1A2C1006332).

참고문헌

  1. A. G. Frank, L. S. Dalenogare, and N. F. Ayala, "Industry 4.0 technologies: Implementation patterns in manufacturing companies," International Journal of Production Economics, Vol.210, pp.15-26, 2019. https://doi.org/10.1016/j.ijpe.2019.01.004
  2. A. Weiss and A. Huber, "User experience of a smart factory robot: Assembly line workers demand adaptive robots," arXiv preprint arXiv:1606.03846, 2016.
  3. R. Ahmad and S. Kamaruddin, "An overview of time-based and condition-based maintenance in industrial application," Computers & Industrial Engineering, Vol.63, No.1, pp.135-149, 2012. https://doi.org/10.1016/j.cie.2012.02.002
  4. T. Gulledge, S. Hiroshige, and R. Iyer, "Condition-based maintenance and the product improvement process," Computers in Industry, Vol.61. No.9, pp.813-832, 2010. https://doi.org/10.1016/j.compind.2010.07.007
  5. S. Selcuk, "Predictive maintenance, its implementation and latest trends," Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, Vol.231, No.9, pp.1670-1679, 2017. https://doi.org/10.1177/0954405415601640
  6. L. F. Villa, A. Renones, and J. R. Peran, "Statistical fault diagnosis based on vibration analysis for gear test-bench under non-stationary conditions of speed and load," Mechanical Systems and Signal Processing, Vol.29, pp.436- 446, 2012. https://doi.org/10.1016/j.ymssp.2011.12.013
  7. S. Vallachira, M. Orkisz, M. Norrlof, and S. Butail, "Data-driven gearbox failure detection in industrial robots," IEEE Transactions on Industrial Informatics, Vol.16, No.1, pp.193-201, 2019. https://doi.org/10.1109/TII.2019.2912809
  8. D. A. Tobon-Mejia, K. Medjaher, and N. Zerhouni, "CNC machine tool's wear diagnostic and prognostic by using dynamic Bayesian networks," Mechanical Systems and Signal Processing, Vol.28, pp.167-182, 2012. https://doi.org/10.1016/j.ymssp.2011.10.018
  9. Z. Yu and Y. Zhang, "Diagnosis of the misaligned faults of the vertical test instrument of high-precision industrial robot reducer," Shock and Vibration, Vol.2021, pp.1-17, 2021.
  10. A. Bonci, S. Longhi, and F. Verdini, "Predictive maintenance system using motor current signal analysis for industrial robot," 2019 24th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), IEEE, 2019.
  11. Q. Yang, Xi. Li, Yi. Wang, and A. Ainapure, "Fault diagnosis of ball screw in industrial robots using non-stationary motor current signals," Procedia Manufacturing, Vol.48, pp.1102-1108, 2020. https://doi.org/10.1016/j.promfg.2020.05.151
  12. Y. Kim, J. Park, K. Na, H. Yuan, B. D. Youn, and C. S. Kang, "Phase-based time domain averaging (PTDA) for fault detection of a gearbox in an industrial robot using vibration signals," Mechanical Systems and Signal Processing, Vol.138, pp.106544, 2020.
  13. C. C. Lo, C. H. Lee, and W. C. Huang, "Prognosis of bearing and gear wears using convolutional neural network with hybrid loss function," Sensors, Vol.20, No.12, pp.3539, 2020.
  14. J. Long, J. Mou, L. Zhang, S. Zhang, and C. Li, "Attitude data-based deep hybrid learning architecture for intelligent fault diagnosis of multi-joint industrial robots," Journal of Manufacturing Systems, Vol.61, pp.736-745, 2020. https://doi.org/10.1016/j.jmsy.2020.08.010
  15. L. F. Villa, A. Renones, and J. R. Peran, "Statistical fault diagnosis based on vibration analysis for gear test-bench under non-stationary conditions of speed and load," Mechanical Systems and Signal Processing, Vol.29 pp.436- 446, 2012. https://doi.org/10.1016/j.ymssp.2011.12.013
  16. Z. Gao, C. Cecati, and S. X. Ding, "A survey of fault diagnosis and fault-tolerant techniques-Part I: Fault diagnosis with model-based and signal-based approaches," IEEE Transactions on Industrial Electronics, Vol.62, No.6, pp.3757-3767, 2015. https://doi.org/10.1109/TIE.2015.2417501
  17. L. Console and O. Dressler, "Model-based diagnosis in the real world: Lessons learned and challenges remaining," IJCAI, Vol.99, 1999.
  18. A. Soualhi, M. Lamraoui, B. Elyousfi, and H. Razik, "PHM SURVEY: Implementation of diagnostic methods for monitoring industrial systems," International Journal of Prognostics and Health Management, Vol.10, No.2, pp.6909-6932, 2019.
  19. D. U. Campos-Delgado and D. R. Espinoza-Trejo, "An observer-based diagnosis scheme for single and simultaneous open-switch faults in induction motor drives," IEEE Transactions on Industrial Electronics, Vol.58, No.2, pp.671-679, 2010. https://doi.org/10.1109/TIE.2010.2047829
  20. Z. W. Huang, Y. Z. Yang, J. Wang, and Y. Li, "Parity space-based fault diagnosis of CCBII braking system," Journal of Central South University, Vol.20, No.10, pp.2922-2928, 2013. https://doi.org/10.1007/s11771-013-1814-2
  21. A. T. James, O. P. Gandhi, and S. G. Deshmukh, "Fault diagnosis of automobile systems using fault tree based on digraph modeling," International Journal of System Assurance Engineering and Management, Vol.9, No.2, pp.494- 508, 2018. https://doi.org/10.1007/s13198-017-0693-6
  22. A. A. Jaber and R. Bicker, "Industrial robot backlash fault diagnosis based on discrete wavelet transform and artificial neural network," American Journal of Mechanical Engineering, Vol.4, No.1, pp.21-31, 2016. https://doi.org/10.1784/insi.2016.58.4.179
  23. J. Pan, L. Qu, and K. Peng, "Sensor and actuator fault diagnosis for robot joint based on deep CNN," Entropy, Vol.23, No.6, pp.751, 2021.
  24. P. Zou, B. Hou, J. Lei, and Z. Zhang, "Bearing fault diagnosis method based on EEMD and LSTM," International Journal of Computers Communications & Control, Vol.15, No.1, 2020.
  25. I. Mitiche, T. McGrail, P. Boreham, A. Nesbitt, and G. Morison, "Data-driven anomaly detection in high-voltage transformer bushings with lstm auto-encoder," Sensors, Vol.21, No.21, pp.7426, 2021.
  26. S. Hochreiter and J. Schmidhuber, "Long short-term memory," Neural Computation, Vol.9, No.8, pp.1735-1780, 1997. https://doi.org/10.1162/neco.1997.9.8.1735
  27. "Niryo One - An accessible educational 6 axis robotic arm, just for you - Niryo," Niryo, 2020. [Internet], https://niryo.com/niryo-one/. [Accessed: 15 Oct 2019].