DOI QR코드

DOI QR Code

Observational analysis of wind characteristics in the near-surface layer during the landfall of Typhoon Mujigae (2015)

  • Lin Xue (School of Finance, Yunnan University of Finance and Economics) ;
  • Ying Li (State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences) ;
  • Lili Song (Chinese Academy of Meteorological Sciences)
  • Received : 2023.02.11
  • Accepted : 2023.09.28
  • Published : 2023.10.25

Abstract

We investigated the wind characteristics in the near-surface layer during the landfall of Typhoon Mujigae (2015) based on observations from wind towers in the coastal areas of Guandong province. Typhoon Mujigae made landfall in this region from 01:00 UTC to 10:00 UTC on October 4, 2015. In the region influenced by the eyewall of the tropical cyclone, the horizontal wind speed was characterized by a double peak, the wind direction changed by >180°, the vertical wind speed increased by three to four times, and the angle of attack increased significantly to a maximum of 7°, exceeding the recommended values in current design criteria. The vertical wind profile may not conform to a power law distribution in the near-surface layer in the region impacted by the eyewall and spiral rainband. The gust factors were relatively dispersed when the horizontal wind speed was small and tended to a smaller value and became more stable with an increase in the horizontal wind speed. The variation in the gust factors was the combined result of the height, wind direction, and circulation systems of the tropical cyclone. The turbulence intensity and the downwind turbulence energy spectrum both increased notably in the eyewall and spiral rainband and no longer satisfied the assumption of isotropy in the inertial subrange and the -5/3 law. This result was more significant in the eyewall area than in the spiral rainband. These results provide a reference for forecasting tropical cyclones, wind-resistant design, and hazard prevention in coastal areas of China to reduce the damage caused by high winds induced by tropical cyclones.

Keywords

Acknowledgement

This work was financially supported by the National Key R&D Program of China (Grant 2023YFC3008501), National Natural Science Foundation of China (Grants 42005141, 41930972 and 72263033), the Yunnan Fundamental Research Projects (Grant 202001AU070089), the Open Grants of the Joint Open Lab on Meteorological Risk and Insurance (2023F010), the Scientific Research Projects of Yunnan University of Finance and Economics (2018B11), the Key Research and Development Plan of Yunnan Province (202203AC100003), and Financial Innovation Center of Southwestern University of Finance and Economics (FIC2021C0012). The authors also would like to express their sincere gratitude to the reviewers and editors for their constructive comments and helpful suggestions.

References

  1. Bai, L., Meng, Z., Huang, L., Yan, L., Li, Z., Mai, X., Huang, Y., Yao, D. and Wang, X. (2017), "An integrated damage, visual, and radar analysis of the 2015 Foshan, Guangdong, EF3 tornado in China produced by the landfalling Typhoon Mujigae (2015)", Bull. Amer. Meteorol. Soc., 98(12), 2619-2640. https://doi.org/10.1175/BAMS-D-16-0015.1. 
  2. Balderrama, J., Masters, F. and Gurley, K. (2012), "Peak factor estimation in hurricane surface winds", J. Wind Eng. Ind. Aerod., 102 1-13. https://doi.org/10.1016/j.jweia.2011.12.003. 
  3. Cao, S., Tamura, Y., Kikuchi, N., Saito, M., Nakayama, I. and Matsuzaki, Y. (2009), "Wind characteristics of a strong typhoon", J. Wind Eng. Ind. Aerod., 97(1), 11-21. https://doi.org/10.1016/j.jweia.2008.10.002. 
  4. Chen, W.C., Song, L.L., Zhi, S.Q. and Qin, P. (2011), "Analysis on gust factor of tropical cyclone strong wind over different underlying surfaces", Sci. China Technol. Sci., 54, 2576-2586. https://doi.org/10.1007/s11431-011-4511-0. 
  5. Chen, X., Xue, M. and Fang, J. (2018), "Rapid intensification of Typhoon Mujigae (2015) under different sea surface temperatures: Structural changes leading to rapid intensification", J. Atmos. Sci., 75(12), 4313-4335. https://doi.org/10.1175/JAS-D-18-0017.1. 
  6. China Meteorological Administration (2015), Yearbook of Tropical Cyclone (Typhoon) in China (2015), Beijing, Meteorological Press. (in Chinese) 
  7. Choi, E.C. (2004), "Field measurement and experimental study of wind speed profile during thunderstorms", J. Wind Eng. Ind. Aerod., 92(3-4), 275-290. https://doi.org/10.1016/j.jweia.2003.12.001. 
  8. Dai, G., Xu, Z., Chen, Y.F., Flay, R.G. and Rao, H. (2021), "Analysis of the wind field characteristics induced by the 2019 Typhoon Bailu for the high-speed railway bridge crossing China's southeast bay", J. Wind Eng. Ind. Aerod., 211, 104557. https://doi.org/10.1016/j.jweia.2021.104557. 
  9. Davis, F.K. and Newstein, H. (1968), "The variation of gust factors with mean wind speed and with height", J. Appl. Meteorol. Climatol., 7(3), 372-378. https://doi.org/10.1175/1520-0450(1968)007. 
  10. Fang, G., Zhao, L., Cao, S., Ge, Y. and Li, K. (2019), "Gust characteristics of near-ground typhoon winds", J. Wind Eng. Ind. Aerod., 188, 323-337. https://doi.org/10.1016/j.jweia.2019.03.008. 
  11. Franklin, J.L., Black, M.L. and Valde, K. (2003), "GPS dropwindsonde wind profiles in hurricanes and their operational implications", Weather Forecasting. 18(1), 32-44. https://doi.org/10.1175/1520-0434(2003)018. 
  12. Giammanco, I.M., Schroeder, J.L. and Powell, M.D. (2012), "Observed characteristics of tropical cyclone vertical wind profiles", Wind Struct., 15(1), 65. https://doi.org/10.12989/was.2012.15.1.065. 
  13. Harper, B., Kepert, J. and Ginger, J. (2010), "Guidelines for converting between various wind averaging periods in tropical cyclone conditions", Available from https://www.systemsengineeringaustralia.com.au/download/WMO_TC_Wind_Averaging_27_Aug_2010.pdf.
  14. He, J., Chan, P., Li, Q., Li, L., Zhang, L. and Yang, H. (2022), "Observations of wind and turbulence structures of Super Typhoons Hato and Mangkhut over land from a 356 m high meteorological tower", Atmos. Res., 265, 105910. https://doi.org/10.1016/j.atmosres.2021.105910. 
  15. He, J., He, Y., Li, Q., Chan, P., Zhang, L., Yang, H. and Li, L. (2020), "Observational study of wind characteristics, wind speed and turbulence profiles during Super Typhoon Mangkhut", J. Wind Eng. Ind. Aerod., 206, 104362. https://doi.org/10.1016/j.jweia.2020.104362. 
  16. He, J., Hon, K., Li, Q. and Chan, P. (2022), "Wind profile analysis for selected tropical cyclones over the South China Sea based on dropsonde measurements", Atmosfera. 35(1), 111-126. https://doi.org/10.20937/atm.52900. 
  17. He, J., Li, Q. and Chan, P. (2021), "Reduced gust factor for extreme tropical cyclone winds over ocean", J. Wind Eng. Ind. Aerod., 208, 104445. https://doi.org/10.1016/j.jweia.2020.104445. 
  18. He, Y., Chan, P. and Li, Q. (2013), "Wind profiles of tropical cyclones as observed by Doppler wind profiler and anemometer", Wind Struct., 17(4), 419-433. https://doi.org/10.12989/was.2013.17.4.419. 
  19. He, Y., Chan, P. and Li, Q. (2016), "Observations of vertical wind profiles of tropical cyclones at coastal areas", J. Wind Eng. Ind. Aerod., 152, 1-14. https://doi.org/10.1016/j.jweia.2016.01.009. 
  20. He, Y., Chan, P. and Li, Q. (2018), "Observational study on thermodynamic and kinematic structures of Typhoon Vicente (2012) at landfall", J. Wind Eng. Ind. Aerod., 172, 280-297. https://doi.org/10.1016/j.jweia.2017.11.008. 
  21. Ishizaki, H. (1983), "Wind profiles, turbulence intensities and gust factors for design in typhoon-prone regions", J. Wind Eng. Ind. Aerod., 13(1-3), 55-66. https://doi.org/10.1016/0167-6105(83)90128-9. 
  22. Li, L., Kareem, A., Hunt, J., Xiao, Y., Zhou, C. and Song, L. (2015), "Turbulence spectra for boundary-layer winds in tropical cyclones: a conceptual framework and field measurements at coastlines", Bound. Layer Meteorol., 154(2), 243-263. https://doi.org/10.1080/15732479.2018.1505923. 
  23. Li, Q., He, Y., He, Y., Zhou, K. and Han, X. (2019), "Monitoring wind effects of a landfall typhoon on a 600 m high skyscraper", Struct. Infrastruct. Eng., 15(1), 54-71. https://doi.org/10.1080/15732479.2018.1505923. 
  24. Lin, L., Chen, K., Xia, D., Wang, H., Hu, H. and He, F. (2018), "Analysis on the wind characteristics under typhoon climate at the southeast coast of China", J. Wind Eng. Ind. Aerod., 182 37-48. https://doi.org/10.1016/j.jweia.2018.09.003. 
  25. Lombardo, F.T., Smith, D.A., Schroeder, J.L. and Mehta, K.C. (2014), "Thunderstorm characteristics of importance to wind engineering", J. Wind Eng. Ind. Aerod., 125, 121-132. https://doi.org/10.1016/j.jweia.2013.12.004. 
  26. Masters, F.J., Tieleman, H.W. and Balderrama, J.A. (2010), "Surface wind measurements in three Gulf Coast hurricanes of 2005", J. Wind Eng. Ind. Aerod., 98(10-11), 533-547. https://doi.org/10.1016/j.jweia.2010.04.003. 
  27. Powell, M.D., Vickery, P.J. and Reinhold, T.A. (2003), "Reduced drag coefficient for high wind speeds in tropical cyclones", Nature. 422(6929), 279-283. https://doi.org/10.1038/nature01481. 
  28. Schuster, A. (1899), "The periodgram of magnetic declination as obtained from the records of the greenwich observatory during the years 1871-1895", Trans. Cambridge Philosophical Soc., 18, 107-135. https://doi.org/10.1002/qj.4970032406. 
  29. Sharma, R.N. and Richards, P. (1999), "A re-examination of the characteristics of tropical cyclone winds", J. Wind Eng. Ind. Aerod., 83(1-3), 21-33. https://doi.org/10.1016/S0167-6105(99)00058-6. 
  30. Song, L., Pang, J., Jiang, C., Huang, H. and Qin, P. (2010), "Field measurement and analysis of turbulence coherence for Typhoon Nuri at Macao Friendship Bridge", Sci. China Technol. Sci., 53, 2647-2657. https://doi.org/10.1007/s11431-010-4084-3. 
  31. Song, L.L., Chen, W.C. and Huang, H.H. (2011), "Reliability and Representative Assessments of Wind Observation Data in the Study of Typhoon Wind Resistance Engineering", Adv. Meteorol. Sci. Technol., 1(01), 35-39. (in Chinese).
  32. Song, L.L., Li, Q., Chen, W., Qin, P., Huang, H. and He, Y. (2012), "Wind characteristics of a strong typhoon in marine surface boundary layer", Wind Struct., 15(1), 1-15. https://doi.org/10.12989/was.2012.15.1.001. 
  33. Song, L.L., Mao, H.Q. and Tang, H.Y. (2004), "Observation and analysis of guangdong coastal gales in the near-surface layer", J. Tropical Meteorol., 20, 731-736. (in Chinese). https://doi.org/10.3969/j.issn.1004-4965.2004.06.014. 
  34. Song, L.L. and Wu, Z.P. (2009), "An analysis of the characteristics of strong winds in the surface layer over a complex terrain", Acta Meteorologica Sinica. 67(3), 452- 460. (in Chinese). https://doi.org/10.3321/j.issn:0577-6619.2009.03.012. 
  35. Sparks, N., Hon, K., Chan, P., Wang, S., Chan, J., Lee, T. and Toumi, R. (2019), "Aircraft observations of tropical cyclone boundary layer turbulence over the South China Sea", J. Atmos. Sci., 76(12), 3773-3783. https://doi.org/10.1175/JAS-D-19-0128.1. 
  36. Sparks, P.R., Huang, Z. (2001), "Gust factors and surface-to-gradient wind-speed ratios in tropical cyclones", J. Wind Eng. Ind. Aerod., 89(11-12), 1047-1058. https://doi.org/10.1016/S0167-6105(01)00098-8. 
  37. Stull, R.B. (2012), An Introduction to Boundary Layer Meteorology, Springer Science & Business Media 
  38. Tang, X., Ping, F., Yang, S., Li, M. and Peng, J. (2018), "Relationship between convective bursts and the rapid intensification of Typhoon Mujigae (2015)", Atmosp. Sci. Lett., 19(4), e811. https://doi.org/10.1002/asl.811. 
  39. Vickery, P.J. and Skerlj, P.F. (2005), "Hurricane gust factors revisited", J. Struct. Eng., 131(5), 825-832. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:5(825. 
  40. Vickery, P.J., Wadhera, D., Powell, M. D. and Chen, Y. (2009), "A hurricane boundary layer and wind field model for use in engineering applications", J. Appl. Meteorol. Climatol., 48(2), 381-405. https://doi.org/10.1175/2008jamc1841.1. 
  41. Wallace, J.M. and Hobbs, P.V. (2006), Atmospheric Science: An Introductory Survey, Elsevier 
  42. Wang, S. and Jiang, Q. (2017), "Impact of vertical wind shear on roll structure in idealized hurricane boundary layers", Atmos. Chemistry Phys., 17(5), 3507-3524. https://doi.org/10.5194/acp17-3507-2017. 
  43. Wang, X., Huang, C., Huang, P. and Yu, X. (2017), "Study on wind characteristics of a strong typhoon in near-ground boundary layer", Struct. Des. Tall Spec. Build.. 26(5), e1338. https://doi.org/10.1002/tal.1338. 
  44. Wang, Z.C., Zhi, S.Q. and Ding, L.Y. (2013), "Observation and analysis on qiongzhou strait gales of severe typhoon neasat (2011)", J. Appl. Meteorol. Sci., 24(5), 599-605. (in Chinese). https://doi.org/10.11898/1001-7313.20130509. 
  45. Xiang, H.F., Lin, Z.X. and Bao, W.G. (1996), Chinese Guideline for Wind-Resistant Design of Highway Bridges, Beijing: China Communications Press.(in Chinese) 
  46. Xiao, Y.Q., Li, L.X., Song, L.L. and Qin, P. (2012), "Study on wind characteristics of typhoon Hagupit based on offshore sea surface measurements", ACTA Aerodynamica Sinica. 30(3), 380-387. (in Chinese). https://doi.org/10.3969/j.issn.0258-1825.2012.03.017. 
  47. Yan, J.Y., Zhang, X.Z. and Chen, Q.J. (1995), "The standard of rapidly intensified tropical cyclones", Meteorol. Month., 21(5), 9-13. (in Chinese). https://doi.org/10.7519/j.issn.1000-0526.1995.5.002 . 
  48. Yi, G., Pan, J., Zhao, L., Song, L., Fang, G., Cui, W. and Ge, Y. (2022), "Profiles of mean wind and turbulence intensity during strong typhoon landfall", J Wind Eng. Ind. Aerod., 228, 105106. https://doi.org/10.1016/j.jweia.2022.105106. 
  49. Ying, M., Zhang, W., Yu, H., Lu, X., Feng, J., Fan, Y., Zhu, Y. and Chen, D. (2014), "An overview of the China Meteorological Administration tropical cyclone database", J. Atmosp. Oceanic Technol., 31(2), 287-301. https://doi.org/10.1175/jtech-d-12-00119.1. 
  50. Yu, B. and Chowdhury, A.G. (2009), "Gust factors and turbulence intensities for the tropical cyclone environment", J. Appl. Meteorol. Climatology. 48(3), 534-552. https://doi.org/10.1175/2008JAMC1906.1. 
  51. Zhang, J.A., Rogers, R.F., Nolan, D.S. and Marks Jr, F.D. (2011), "On the characteristic height scales of the hurricane boundary layer", Month. Weather Rev., 139(8), 2523-2535. https://doi.org/10.1175/mwr-d-10-05017.1. 
  52. Zhao, K., Wang, M., Xue, M., Fu, P., Yang, Z., Chen, X., Zhang, Y., Lee, W.-C., Zhang, F. and Lin, Q. (2017), "Doppler radar analysis of a tornadic miniature supercell during the landfall of Typhoon Mujigae (2015) in South China", Bull. Amer. Meteorol. Soc., 98(9), 1821-1831. https://doi.org/10.1175/bams-d-15-00301.1. 
  53. Zhao, X.P., Zhu, J.J. and Fan, J. (2016), "Analysis on wind characteristics in surface layer during landfall of typhoon Kalmaeg", Meteorol. Month., (4), 415-423. (in Chinese). https://doi.org/CNKI:SUN:QXXX.0.2016-04-004. 
  54. Zou, Y., Lei, X., Yan, L., He, X., Nie, M., Xie, W. and Luo, X. (2020), "Full-scale measurements of wind structure and dynamic behaviour of a transmission tower during a typhoon", Struct. Infrastruct. Eng., 16(5), 820-830. https://doi.org/10.1080/15732479.2019.1670679.